Publications

Export 138 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
T. Phuong HThi, BT B, Herremans D., Roig G..  2021.  AttendAffectNet: Self-Attention based Networks for Predicting Affective Responses from Movies. Proceedings of the International Conference on Pattern Recognition (ICPR2020). PDF icon 2010.11188.pdf (7.07 MB)
T. Phuong HThi, Herremans D., Roig G..  2019.  Multimodal Deep Models for Predicting Affective Responses Evoked by Movies. The 2nd International Workshop on Computer Vision for Physiological Measurement as part of ICCV. Seoul, South Korea. 2019. PDF icon 1909.06957.pdf (836.3 KB)
T. Phuong HThi, BT B, Roig G., Herremans D..  2021.  AttendAffectNet – Emotion Prediction of Movie Viewers Using Multimodal Fusion with Self-attention. Sensors. Special issue on Intelligent Sensors: Sensor Based Multi-Modal Emotion Recognition. PDF icon sensors-21-08356.pdf (1.03 MB)
Pham Q-H, Herremans D., Roig G..  2022.  EmoMV: Affective Music-Video Correspondence Learning Datasets for Classification and Retrieval. Information Fusion. PDF icon SSRN-id4189323.pdf (2.01 MB)
Pham Q-H.  2020.  Data-driven 3D Scene Understanding. PhD
N
Nahar F., Agres K., BT B, Herremans D..  2020.  A dataset and classification model for Malay, Hindi, Tamil and Chinese music. 13th Workshop on music and machine learning (MML) as part of ECML/PKDD. PDF icon 2009.04459.pdf (234.8 KB)
M
Melechovsky J., Mehrish A., Sisman B., Herremans D..  2024.  DART: Disentanglement of Accent and Speaker Representation in Multispeaker Text-to-Speech. Audio Imagination: NeurIPS 2024 Workshop.
Melechovsky J., Mehrish A., Sisman B., Herremans D..  2024.  Accent Conversion in Text-To-Speech Using Multi-Level VAE and Adversarial Training. Proc. of IEEE Tencon, Singapore.
Melechovsky J., Mehrish A., Sisman B., Herremans D..  2024.  Accented Text-to-Speech Synthesis with a Conditional Variational Autoencoder. Proc. of IEEE Tencon, Singapore.
Melechovsky J., Roy A., Herremans D..  2024.  MidiCaps — A large-scale MIDI dataset with text captions. ISMIR. PDF icon 2406.02255v1.pdf (699.83 KB)
Melechovsky J., Mehrish A., Herremans D., Sisman B..  2023.  Learning accent representation with multi-level VAE towards controllable speech synthesis. IEEE Spoken Language Technology (SLT) Workshop.
Melechovsky J, Guo Z, Ghosal D, Majumder N, Herremans D, Poria S.  2024.  Mustango: Toward Controllable Text-to-Music Generation. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). pages 8293–8316. PDF icon 2311.08355 (1).pdf (11.38 MB)
Makris D., Guo Z, Kaliakatsos-Papakostas N., Herremans D..  2022.  Conditional Drums Generation using Compound Word Representations. EvoMUSART (EVO*) - Lecture Notes in Computer Science. PDF icon 2202.04464.pdf (525.36 KB)
Makris D., Agres K., Herremans D..  2021.  Generating Lead Sheets with Affect: A Novel Conditional seq2seq Framework. Proceedings of the International Joint Conference on Neural Networks (IJCNN). PDF icon 2104.13056.pdf (857.78 KB)
L
Luo Y.J., Hsu C.-C., Agres K., Herremans D..  2020.  Singing voice conversion with disentangled representations of singer and vocal technique using variational autoencoders. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). PDF icon 1912.02613.pdf (2.9 MB)
Luo J., Yang X., Herremans D..  2024.  BandControlNet: Parallel Transformers-based Steerable Popular Music Generation with Fine-Grained Spatiotemporal Features. arXiv:2407.10462. PDF icon 2407.10462v1.pdf (2.3 MB)
Luo Y.J., Agres K., Herremans D..  2019.  Learning Disentangled Representations of Timbre and Pitch for Musical Instrument Sounds Using Gaussian Mixture Variational Autoencoders. ISMIR. PDF icon jyun-ismir.pdf (5.62 MB)
Luo Y.J., Cheuk K.W., Nakano T., Goto M., Herremans D..  2020.  Unsupervised disentanglement of pitch and timbre for isolated musical instrument sounds. Proceedings of the International Society of Music Information Retrieval (ISMIR).
Liu R., Roy A., Herremans D..  2025.  Leveraging LLM Embeddings for Cross Dataset Label Alignment and Zero Shot Music Emotion Prediction.
Lin K.W.E., BT B, Koh E., Lui S., Herremans D..  2018.  Singing Voice Separation Using a Deep Convolutional Neural Network Trained by Ideal Binary Mask and Cross Entropy. Neural Computing and Applications. PDF icon main.pdf (2.59 MB)
Levers O.D, Herremans D., Dipankar A., Blessing L..  2022.  Downscaling using Deep Convolutional Autoencoders, a case study for South East Asia. Egusphere preprint. PDF icon egusphere-2022-234.pdf (8.99 MB)
Lee-Leon A., Yuen C., Herremans D..  2021.  Underwater Acoustic Communication Receiver Using Deep Belief Network. IEEE Transactions on Communications. :1-1.PDF icon 2102.13397.pdf (12.87 MB)
Lee-Leon A., Yuen C., Herremans D..  2019.  Doppler Invariant Demodulation for Shallow Water Acoustic Communications Using Deep Belief Networks. 16th IEEE Asia Pacific Wireless Communications Symposium (APWCS). PDF icon 1909.02850.pdf (790.54 KB)
Lee-Leon A., Yuen C., Herremans D..  2019.  A Hybrid Fuzzy Logic-Neural Network Approach For Multi-path Separation Of Underwater Acoustic Signals. 89th IEEE Vehicular Technology Conference. PDF icon fuzzy logic.pdf (1.66 MB)
Le D-V-T, Bigo L., Keller M., Herremans D..  2025.  Natural Language Processing Methods for Symbolic Music Generation and Information Retrieval: a Survey. ACM Computing Surveys. PDF icon 2402.17467.pdf (1.01 MB)
Lanzendörfer L.A., Lu T., Perraudin N., Herremans D., Wattenhofer R..  2024.  Coarse-to-Fine Text-to-Music Latent Diffusion. Audio Imagination: NeurIPS 2024 Workshop.
Lanzendörfer L.A., Lu T., Perraudin N., Herremans D., Wattenhofer R..  2025.  Coarse-to-Fine Text-to-Music Latent Diffusion. ICASSP.
Lam P., Zhang H., Chen N.F, Sisman B., Herremans D..  2024.  SNIPER Training: Variable Sparsity Rate Training For Text-To-Speech. Proc. of IEEE Tencon, Singapore. PDF icon 2211.07283.pdf (435.22 KB)
Lam P., Zhang H., Chen N.F, Sisman B., Herremans D..  2025.  PRESENT: Zero-Shot Text-to-Prosody Control. IEEE Signal Processing Letters. PDF icon 2408.06827v1.pdf (367.55 KB)
H
Huang J, Chia YKen, Yu S, Yee K, Küster D, Krumhuber EG, Herremans D, Roig G..  2022.  Single Image Video Prediction with Auto-Regressive GANs. Sensors. 22:3533.
Herremans D., Weisser S., Sörensen K., Conklin D..  2014.  Markov Based Quality Metrics For Generating Structured Music With Optimization Techniques. Digital Music Research Network (DMNR+9). PDF icon dmrn9_dh.pdf (133.29 KB)
Herremans D., Sörensen K..  2011.  A Variable Neighborhood Search Algorithm for Composing First Species Counterpoint Musical Fragments. 2011017PDF icon wp_cp1.pdf (775.91 KB)
Herremans D..  2005.  Tabu Search voor de optimalisatie van muzikale fragmenten. Faculty of Applied Economics. MSc Business Engineer Management Information SystemsPDF icon Thesis.pdf (1.25 MB)
Herremans D..  2014.  Compose=Compute - Computer Generation And Classification Of Music Through Operations Research Methods. PhD Thesis, University of Antwerp. :250.
Herremans D., Sörensen K., Conklin D..  2013.  First species counterpoint generation with VNS and vertical viewpoints. Digital Music Research Network (DMNR+8). PDF icon dnmr8_dh_dc.pdf (147.73 KB)
Herremans D., Weisser S., Sörensen K., Conklin D..  2015.  Generating structured music for bagana using quality metrics based on Markov models. Expert Systems With Applications. 42 (21)(21):424–7435.PDF icon paper-bagana.pdf (1.73 MB)
Herremans D., Chew E..  2017.  MorpheuS: generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing. PP (In Press)(99)PDF icon herremans2017morpheusFullIEEE.pdf (5.71 MB)
Herremans D., Martens D, Sörensen K..  2014.  Looking into the minds of Bach, Haydn and Beethoven: Classification and generation of composer-specific music. PDF icon RPS-2014-001.pdf (575.42 KB)
Herremans D., Sörensen K..  2012.  Composing first species counterpoint musical scores with a variable neighbourhood search algorithm. Journal of Mathematics and the Arts. 6:169-189.
Herremans D., Chew E..  2016.  Music generation with structural constraints: an operations research approach. 30th Annual Conference of the Belgian Operational Research (OR) Society (ORBEL30). :37-39.PDF icon orbel30_dh.pdf (117.78 KB)
Herremans D.  2015.  Compose ≡ compute. 4OR. 13:335–336.
Herremans D., Martens D, Sörensen K..  2013.  Dance Hit Song Science. International Workshop on Music and Machine Learning. PDF icon abstract_preprint_MML2013_DH.pdf (194.82 KB)
Herremans D., Low K.W..  2022.  Forecasting Bitcoin Volatility Spikes from Whale Transactions and Cryptoquant Data Using Synthesizer Transformer Models. SSRN. PDF icon SSRN-id4247684.pdf (5.05 MB)
Herremans D., Lauwers W..  2017.  Visualizing the evolution of alternative hit charts. The 18th International Society for Music Information Retrieval Conference (ISMIR) - Late Breaking Demo. PDF icon dh_visualiation_preprint.pdf (5.34 MB)
Herremans D..  2025.  Royalties in the age of AI: paying artists for AI-generated songs. WIPO Magazine.
Herremans D., Weisser S., Sörensen K., Conklin D..  2015.  Generating music with an optimization algorithm using a Markov based objective function. ORBEL29, Belgian Conference on Operations Research. PDF icon orbel29abs.pdf (138.67 KB)
Herremans D., Chew E..  2016.  MorpheuS: Automatic music generation with recurrent pattern constraints and tension profiles. IEEE TENCON. PDF icon paper_morpheus_dh_ieee.pdf (550.61 KB)
Herremans D., Chuan C.-H., Chew E..  2017.  A Functional Taxonomy of Music Generation Systems. ACM Computing Surveys. 50(5):30.PDF icon music_generation_survey_dh_preprint.pdf (349.15 KB)
Herremans D., Weisser S., Sörensen K., Conklin D..  2014.  Generating structured music using quality metrics based on Markov models. PDF icon wp_bagana.pdf (1.7 MB)
Herremans D., Sörensen K..  2012.  Composing Fifth Species Counterpoint Music With Variable Neighborhood Search. PDF icon wp_cp5.pdf (508 KB)
Herremans D., Chuan C.-H..  2017.  A multi-modal platform for semantic music analysis: visualizing audio- and score-based tension. 11th International Conference on Semantic Computing IEEE ICSC 2017. PDF icon paper_preprint.pdf (1.63 MB)
Herremans D., Sörensen K..  2013.  Composing Fifth Species Counterpoint Music With A Variable Neighborhood Search Algorithm. Expert Systems with Applications. 40PDF icon paper_preprint_cp5.pdf (405.75 KB)
Herremans D., Sörensen K., Martens D.  2015.  Classification and generation of composer-specific music using global feature models and variable neighborhood search. Computer Music Journal. 39(3):91.PDF icon papercmj-dh_preprint.pdf (637.63 KB)
Herremans D., Chew E..  2016.  MorpheuS: constraining structure in automatic music generation. Dagstuhl seminar on Computational Music Structure Analysis. PDF icon abstract_dagstuhl_dh.pdf (88.49 KB)
Herremans D., Yang S., Chuan C.-H., Barthet M., Chew E..  2017.  IMMA-Emo: A Multimodal Interface for Visualising Score- and Audio-synchronised Emotion Annotations. Audio Mostly. PDF icon IMMA-emo_preprint.pdf (1.4 MB)
Herremans D., Sörensen K., Conklin D..  2014.  First species counterpoint generation with VNS and vertical viewpoints. Annual Conference of the Belgian Operation Research Society (ORBEL28). PDF icon orbel28_dh.pdf (216.63 KB)
Herremans D., Sörensen K..  2012.  Composing counterpoint musical scores with variable neighborhood search. Annual Conference of the Belgian Operation Research Society (ORBEL26). PDF icon orbel26abs_vnsforcp.pdf (116.85 KB)
Herremans D., Martens D, Sörensen K., Meredith D..  2015.  Composer Classification Models for Music-Theory Building. Computational Music Analysis. PDF icon Chapter_HerremansEtAl_preprint.pdf (475.26 KB)
Herremans D., Sörensen K., Conklin D..  2014.  Sampling the extrema from statistical models of music with variable neighbourhood search. ICMC/SMC. PDF icon icmc_dh.pdf (1.07 MB)
Herremans D., Bergmans T..  2017.  Hit Song Prediction Based on Early Adopter Data and Audio Features. The 18th International Society for Music Information Retrieval Conference (ISMIR) - Late Breaking Demo. PDF icon paper_preprint_hit.pdf (221.73 KB)
Herremans D..  2010.  Drupal 6: Ultimate Community Site Guide.
Herremans D.  2021.  aiSTROM - A roadmap for developing a successful AI strategy. IEEE Access.
Herremans D., Chew E..  2016.  Tension ribbons: Quantifying and visualising tonal tension. Second International Conference on Technologies for Music Notation and Representation (TENOR). 2:8-18.PDF icon paper_tenor_dh_preprint_small.pdf (1.67 MB)
Herremans D., Chew E..  2019.  Towards emotion based music generation: A tonal tension model based on the spiral array. Proceedings of Cognitive Science (CogSci). PDF icon CogSci_tension (1).pdf (610.91 KB)
Herremans D., Chuan C.-H..  2017.  Modeling Musical Context with Word2vec. First International Workshop On Deep Learning and Music. 1:11-18.PDF icon herremans2017work2vec.pdf (745.8 KB)
Herremans D., Chuan C.-H..  2019.  The emergence of deep learning: new opportunities for music and audio technologies. Neural Computing and Applications. PDF icon main_preprint.pdf (102.16 KB)
Herremans D., Martens D, Sörensen K..  2014.  Dance hit song prediction. Journal of New music Research. 43:302.PDF icon wp_hit.pdf (689.07 KB)
Herremans D., Sörensen K..  2013.  FuX, an Android app that generates counterpoint. IEEE Symposium on Computational Intelligence for Creativity and Affective Computing (CICAC). :48-55.PDF icon wp_fux.pdf (486.27 KB)
Herremans D., Chew E..  2018.  O.R. and music generation. OR/MS Today. 45(1)PDF icon O.R. and music generation - INFORMS.pdf (825.66 KB)
Hee H.I., BT B, Karunakaran A., Herremans D., Teoh O.H., Lee K.P., Teng S.S., Lui S., Chen J.M..  2019.  Development of Machine Learning for asthmatic and healthy voluntary cough - a proof of concept study. Applied Sciences. 9(14)PDF icon applsci-09-02833.pdf (2.06 MB)
G
Guo R, Simpton I., Kiefer C., Magnusson T, Herremans D..  2022.  MusIAC: An extensible generative framework for Music Infilling Application with multi-level Control. EvoMUSART. PDF icon 2202.05528.pdf (893.23 KB)
Guo Z, Makris D., Herremans D..  2021.  Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure. Proceedings of the International Joint Conference on Neural Networks (IJCNN). PDF icon 2102.09794.pdf (1015.73 KB)
Guo R, Simpson I, Magnusson T, Kiefer C., Herremans D..  2020.  A variational autoencoder for music generation controlled by tonal tension. Joint Conference on AI Music Creativity (CSMC + MuMe). PDF icon 2010.06230.pdf (622.82 KB)
Guo R, Herremans D, Magnusson T.  2019.  Midi Miner – A Python library for tonal tension and track classification. ISMIR - Late Breaking Demo. PDF icon midi_miner.pdf (83.7 KB)
Guo R, Herremans D..  2025.  An exploration of controllability in symbolic music infilling. IEEE Access.
Guo Z, Kang J., Herremans D..  2023.  A Domain-Knowledge-Inspired Music Embedding Space and a Novel Attention Mechanism for Symbolic Music Modeling. Proceedings of the 37th AAAI Conference on Artificial Intelligence. PDF icon 2212.00973.pdf (1.74 MB)
Garg K., Singh A., Herremans D., Lall B..  2020.  PerceptionGAN: Real-world image construction from provided text through perceptual understanding. 4th Int. Conf. on Imaging, Vision and Pattern Recognition (IVPR), and 9th Int. Conf. on Informatics, Electronics & Vision (ICIEV). PDF icon perceptionGAN-preprint.pdf (2.83 MB)

Pages