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In this research, a first order Markov model is built from a corpus of bagana music, a
traditional lyre from Ethiopia. Different ways in which low order Markov models can be
used to build quality assessment metrics for an optimization algorithm are explained. These
are then implemented in a variable neighbourhood search algorithm that generates bagana
music. The results are examined and thorougly evaluated. Due to the size of many datasets
it is often only possible to get rich and reliable statistics for low order models, yet these do
not handle structure very well and their output is often very repetitive. A method is proposed
that allows the enforcement of structure and repetition within music, thus handling long term
coherence with a first order model.

1 Introduction

Music generation systems can be categorised into two main groups. On the one hand are the probabilistic
methods [Allan and Williams, 2005, Conklin and Witten, 1995, Xenakis, 1992], and on the other hand
are optimization methods such as constraint satisfaction [Truchet and Codognet, 2004] and metaheuristics
such as evolutionary algorithms [Horner and Goldberg, 1991, Towsey et al., 2001], ant colony optimiza-
tion [Geis and Middendorf, 2007] and variable neighbourhood search (VNS) [Herremans and Sorensen,
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2013]. The first group considers the solution space as a probability distribution, while the latter opti-
mizes an objective function on a solution space. In this paper, we aim to bridge the gap between those
approaches that consider music generation as an optimization system and those that generate based on a
statistical model.

The main challenge when using an optimization system to compose music is how to determine the
quality of the generated music. Some systems let a human listener specify how “good” the solution is
on each iteration [Horowitz, 1994]. GenJam, a system that composes monophonic jazz fragments given
a chord progression, uses this approach [Biles, 2003]. This type of objective function considerably slows
down the algorithms [Tokui and Iba, 2000] and is known in literature as the human fitness bottleneck.

Most automatic composition systems avoid this bottleneck by implementing an automatically calcu-
lated objective function based on either existing rules from music theory or by learning from a corpus of
existing music. The first strategy has been used in compositional systems such as those of Geis and Mid-
dendorf [2007], Assayag et al. [1999] and Herremans and Sörensen [2013]. Although every musical genre
has its own rules, these are usually not explicitly available, which poses huge limits on the applicability
of this approach [Moore, 2001]. This problem is overcome when style rules can be learned automatically
from existing music. This approach is more robust and expandable to other styles.

Markov models have been applied in a musical context for a long time. The string quartet called the
Illiac Suite was composed by Hiller and Isaacson in 1957 by using a rule based system that included
probability distributions and Markov processes [Sandred et al., 2009]. Pinkerton [1956] learned first
order Markov models based on pitches from a corpus of 39 simple nursery rhyme melodies, and used
them to generate new melodies using a random walk method. Fred and Carolyn Attneave generated two
perfectly convincing cowboy songs by performing a backward random walk on a first order transition
matrix [Cohen, 1962]. Brooks et al. [1957] learned models up to order 8 from a corpus of 37 hymn tunes.
A random process was used to synthesise new melodies from these models.

An interesting conclusion from this early work is that high order models tend to repeat a large part of
the original corpus and that low order models seem very random. This conclusion was later supported by
other researchers such as Moorer [1972], who states: “When higher order methods are used, we get back
fragments of the pieces that were put in, even entire exact repetitions. When lower orders are used, we get
little meaningful information out”. These conclusions are based on a heuristic method whereby the pitch
is still chosen based on its probability, but only accepted or not based on several heuristics which filter out,
for instance, long sequences of non-tonic chords that might otherwise sound dull. Music compositions
systems based on Markov chains need to find a balance in the order to use.

Other music generation research with Markov includes the work of Tipei [1975], who integrates Markov
models in a larger compositional model. Xenakis [1992] uses Markov models to control the order of
musical sections in his composition “Analogique A”. Markov models also form the basis for some real-
time improvisation systems [Dubnov et al., 2003, Pachet, 2003, Assayag and Dubnov, 2004]. Some
more recent work involves the use of constraints for music generation using Markov models [Pachet and
Roy, 2011]. Allan and Williams [2005] trained hidden Markov models for harmonising Bach chorales,
and Whorley et al. [2013] applied a Markov model based on the multiple viewpoint method to generate
four-part harmonisations with random walk. A more complete overview of Markov models for music
composition is given by Fernández and Vico [2013].

In this research, a first order Markov model is built that quantifies note transition probabilities from
a corpus of bagana music, a traditional lyre from Ethiopia. This model is then used to evaluate music
with a certain repetition structure, generated by an optimization procedure previously developed by the
authors [Herremans and Sörensen, 2012]. Due to the size of many available corpora of music, including
the bagana corpus used in this research, rich and reliable statistics are often only available for low order
Markov models. Since these models do not handle structure and can produce very repetitive output, a
method is proposed for handling long term coherence with a first order model. This method will also
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allow us to efficiently calculate the objective function, by using the minimal number of necessary note
intervals as possible while still containing all information about the piece. Secondly, this paper will
critically evaluate how Markov models can be used to construct evaluation metrics in an optimization
context. In the next section more information is given about bagana music, followed by an explanation of
the technique employed to generate repeated and cyclic patterns. An overview of the different methods
by which a Markov model can be converted into an objective function are discussed in Section 3. Variable
neighbourhood search, the optimization method used to generate bagana music, is then explained. An
experiment is set up and the different evaluation metrics are compared in Section 5.

2 Structure and repetition in bagana music

Bagana is a ten-stringed box-lyre played by the Amhara, inhabitants of the Central and Northern part of
Ethiopia. It is an intimate instrument, only accompanied by a singing voice, which is used to perform spir-
itual music. It is the only melodic instrument played exclusively for religious purposes [Weisser, 2012].
The bagana melody and singing voice are quasi homophonic, meaning that the voice and bagana usually
follow each other in unison [Weisser, 2005]. In this research the focus is on analysing and generating the
instrumental part.

The bagana is made of wooden pillars and soundbox, equipped with ten cattle gut strings. The strings
are plucked with the left hand and four strings are used as finger rests. It is tuned to an Amhara traditional
pentatonic scale. Each finger of the left hand is assigned to one string (see Figure 1), except in the case
of the index finger (referred to as finger 2 and 2′ in the figure), which plays two equally tuned strings.
This allows us to make abstraction from the actual pitch and work with the corpus made by Conklin and
Weisser [2014] based on finger numbers (see Section 5).

Figure 1: Assignment of fingers to strings on the bagana

Bagana songs are typically very repetitive with a very recognisable overall structure [Weisser, 2006].
This repetition is intentional since repetitive music has a strong influence on the state of consciousness
among musical traditions. Even Western-trained listeners describe the sounds as “becoming meditative
objects, relaxing the mind” [Dennis, 1974].

An example bagana song, including finger numberings, is given in Figure 2. Note that this piece
consists of two sections, and that only a few segments (A1, A2 and A3) are used, and repeated many
times throughout the duration of the song. Additionally, note that the segment A2 appears within different
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Figure 2: Tew Semagn Hagere by Alemu Aga, as transcribed by Weisser [2005] 
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sections of the piece. In what follows, an approach is described for respecting this structure and repetition
within new sequences generated from Markov models.

Since repetition is so important for bagana music, cycles and repetitions must be represented and eval-
uated in an efficient way. Markov models alone are incapable of representing such structures, which can
involve arbitrarily long-range dependencies, and therefore the approach used here is to preserve the struc-
ture and repetition provided by an existing template piece. The next subsections will describe a method
for representing and efficiently evaluating this structure and repetition while still employing a Markov
model to generate the basic musical material.

2.1 Cycles and patterns

Following the theoretical approach of Angluin [1980], the structure of a bagana piece may be represented
using a pattern, which is a sequence of variables drawn from a set V (we use A1, A2, . . . as variables).
Given a set ξ of event symbols (in the case of bagana, finger numbers), a realization of a pattern is a
substitution from V to ξ? (the set of all sequences formed from event symbols), mapping variables to
sequences of finger numbers. Each variable is also associated with a length, that is, a constraint on the
length of the sequence that can replace the variable. The event sequence replacing a variableAi, associated
with a length e, will be notated in this paper as ai1a

i
2 . . . a

i
e.

To represent repetition of entire sections, the notion of cycles and cyclic patterns is introduced. A
cycle is a sequence of events that is repeated any number of times. For example, in the bagana song of
Figure 2, the two cycles are the event sequences labelled by A1A2 and A3A2. Cycles can be abstracted
and represented as cyclic patterns, which are patterns as described above but now enclosed in the symbols
‖ : and :‖. For example, in the bagana song of Figure 2, the two cyclic patterns are ‖ : A1A2 :‖ and
‖: A3A2 :‖.

Patterns can also be concatenated, forming compound patterns. Taking the bagana song of Figure 2 as
an example, the pattern describing this piece is finally represented as the compound pattern:

‖: A1A2 :‖‖: A3A2 :‖ (1)

with the lengths of A1, A2, A3 being specified as 6, 6, and 13, respectively. The corpus used in this
research (see Section 5.1) has been annotated with these repetition structures by a bagana expert.

2.2 Realizing and evaluating cyclic patterns

A realization of a pattern is a mapping from variables of the pattern onto actual events (i.e., finger num-
bers). The events represented by any one variable are generated using a Markov model and the entire
generation is given by replicating the instances of the same variable. In order to properly generate music
that contains cyclic patterns, traditional statistical sampling methods like random walk are not suited be-
cause long-range dependencies cannot be captured by a low order Markov process. Therefore, we use a
local search optimization technique to generate the variables in this research. The actual realizations of
the events are given to the objective function in order to assess the quality of a generated fragment.
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In order to reduce the number of transition matrix lookups, without losing any information about the
sequence, an expansion technique was developed to generate the minimal extended subsequence that can
be used to calculate the objective function. For example, consider a cycleA = a1a2 . . . ak that is repeated
n times in the template piece. When calculating the objective function, we should take care not to omit
the sequence aka1, which is the transition that is heard whenever the cycle is repeated. Since calculating
the objective function on A alone is not sufficient, we could simply calculate it on the full sequence as
it is played, but this would require roughly n times more transition matrix lookups than required. The
expanded sequence A′ will simply contain an additional element, which represents the transition from
end to beginning: A′ = a1a2 . . . aka1. The expansion method used in this research reduces the number
of lookups while retaining all the information of individual transitions.

2.3 Compound cyclic patterns

Bagana music is characterised by a large number of repetitions combined together. The expansion method
discussed in the previous subsection is applied to reduce the number of transition matrix lookups. This
method keeps the minimum number of intervals without forgetting the connections between the end and
beginning of a cycle, as discussed in the subsection above. For a compound pattern which contains cycles,
some care needs to be taken to exclude certain intervals. For example, for the cyclic pattern described by
Equation 1, the sequence on which the objective function is calculated thus becomes:

A1A2a11 ↓ a2eA3A2a31 (2)

whereby Ai consists of the note sequence ai1a
i
2 . . . a

i
e and the ↓ represent discontinued intervals which

should be excluded from the calculation.
This method as described above is valid for first order evaluation. When an evaluation metric is based

on note sequences of more than two subsequent notes (e.g., unwords, see Section 3.5), higher order
expansion is necessary. In the case of a metric that evaluates sequences of length 3, second order expansion
is necessary, and the expanded sequence becomes:

A1A2a11a
1
2 ↓ a2e−1a2eA3A2a31a

3
2 (3)

where as before the ↓ represents a discontinued interval. In the next section, different methods of using of
Markov models to construct quality metrics for an optimization algorithm are explained.

3 Using Markov models within evaluation metrics

Markov models describe the note transition probabilities of a musical piece or style. In that way, they can
not only be used to generate Markov chains with random walk. We might use them to evaluate the quality
of a musical piece. Farbood and Schoner [2001] use dynamic programming to find the highest probability
sequence of notes in a counterpoint line given a cantus firmus. They used both manually created Markov
models (based on music theory rules) and models learned from a corpus of 44 examples. A high prob-
ability or maximum likelihood approach is also explored by Lo and Lucas [2006] as a fitness function
for a genetic algorithm when generating melodies, based on a corpus of 282 pieces. They conclude that
high probability sequences sound uninteresting due to the large amount of oscillation between just two
notes. Davismoon and Eccles [2010] use a different quality measure. They do not try to maximize the
likelihood, but rather minimize the distance between the transition matrices (both of the original model
and the newly generated piece) with simulated annealing.

In the next subsections, different methods that might be used as quality assessment from a Markov
model are described. The first three quality assesment metrics can be used alone. The latter two are
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constraining metrics that are implemented in combination with one of the first three. These techniques
will be implemented and thoroughly evaluated in Section 5.

3.1 High probability sequences (XE)

Farbood and Schoner [2001] and Lo and Lucas [2006] generate the maximum probability sequence from
a statistical model. It makes intuitive sense that this type of sequence is preferred, yet there might be
more to a good musical piece than just maximizing the probability (e.g., variety). This will be evaluated
in Section 5.

Cross-entropy is used as a measure for high probability sequences, whereby minimal cross-entropy cor-
responds to a maximum likelihood sequence according to the model. The probability P (s) of a fragment
s consisting of a sequence of notes e1, e2, . . . e` is transformed into cross-entropy [Manning and Schutze,
1999]. The cross-entropy is the mean of the information content hi of each event ei in the sequence:

hi = − log2 P (ei | ei−1) (4)

f(s) =
1

`− 1

∑̀
i=2

hi (5)

The quality of a musical fragment is thus evaluated according to the cross-entropy (average negative
log probability) of the fragment computed using the dyad transitions of the transition matrix. This forms
the objective function f(s) that should be minimized.

3.2 Minimal distance between TM of model and solution (DI)

Davismoon and Eccles [2010] use an evaluation metric that tries to match the transition matrices of both
the original model and the newly generated piece by minimizing the Euclidean distance between them.
This will ensure that they have an equal distribution of probabilities after each possible note. The metric
used in this paper is based on Davismoon and Eccles [2010] and can be formulated as follows for an
N ×N transition matrix:

f(s) =
1

N

√∑
a∈ξ

∑
b∈ξ

(
P (b | a)− P̄ (b | a)

)2 (6)

where ξ is the set of event symbols, for example in the bagana the finger numbers, P (b | a) is the model
transition probability from a to b, and P̄ (b | a) is the transition probability calculated from the new piece.

It is expected that this measure enforces more variety in the generated music, as the overall probability
transition distribution is optimized to resemble the one of the corpus. The musical output of the VNS that
minimizes this metric as its objective function will be evaluated in the experiment in Section 5.

3.3 Delta cross-entropy (DE)

In Subsection 3.1 cross-entropy was minimized to find the maximum likelihood sequence. It cannot be
guaranteed that this is a sequence a listener would enjoy. If we look at the corpus, there are proportionally
fewer pieces with low cross-entropy. Figure 3 shows a histogram of the cross-entropy data calculated
with leave-one-out cross-validation from the corpus used in the experiment of Section 5. That is, every
piece was left out of the corpus, the model retrained, and the cross-entropy of that piece was computed
according to the model. It is clear from this figure that most pieces are not even close to the lowest entropy
value that occurs in the corpus. As the results in Section 5 will indicate, the single minimal cross-entropy
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sequence can be very repetitive. Optimizing to the average cross-entropy value E might offer a solution
for this.

When optimizing towards the average cross-entropy value, the function being minimized thus becomes:

f(s) =
∣∣∣E − 1

`− 1

∑̀
i=2

hi

∣∣∣ (7)

where E is the average cross-entropy of the corpus.

Figure 3: Histogram of cross-entropy values of the corpus
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3.4 Information contour (i)

One of the problems mentioned by Lo and Lucas [2006] with high probability sequences is that they
often sound uninteresting and repetitive. More diversity might be achieved by defining the “information
contour” within a piece. Information contour is a measure that describes the movement of information
between two successive events (up indicating less expected than the previous event, down indicating
more expected than the previous event). It can be seen as the contour of the information flow, which has
been used by Witten et al. [1994] and Potter et al. [2007] to measure information dynamics in a musical
analysis. In order to measure this a viewpoint is created that expresses if the information content, with
respect to a model of the corpus that does not include the template piece for each event, is higher, lower,
or equal to that of the previous event. The information contour C(ei) of event ei is defined as:

C(ei) =


up when hi > hi−1

same when hi = hi−1

down when hi < hi−1
In the experiment performed in Section 5, the information contour was calculated for each note tran-

sition of a selected template song (Tew Semagn Hagere). When evaluating a new solution, a similar
information contour may be desirable. Therefore, the objective function to be minimized can be specified
as follows for a piece of ` notes:

f(s) = Mc ×
∑̀
i=2

xi (8)
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whereby

{
xi = 1 when C(ei) is not the same as in the template
xi = 0 when C(ei) is the same as in the template

and Mc is an arbitrarily high number.
This metric will be tested in conjunction with the first three metrics by summing the objective functions.

By using the arbitrarily high number Mc in the equation above, optimizing the information part will have
priority over the other term of the objective function (low entropy, minimize TM distance, delta cross-
entropy).

3.5 Unwords (u)

While music contains patterns that are repeated, it equally contains rare patterns. Conklin [2013a] identi-
fied antipatterns, i.e., significantly rare patterns, from a corpus of Basque folk music and from the corpus
of bagana music used in this research [Conklin and Weisser, 2014]. A related category of rare patterns are
those of unwords. Herold et al. [2008], in their paper on genome research, first suggested this term for the
shortest words from the underlying alphabet that do not show up in a given sequence. Unwords are thus
defined as the shortest sequence of notes (i.e., not contained within a longer unword) that never occur in
the corpus. Among these words, we filter for those that are statistically significant. This results in a list
of words whose absence from the corpus is surprising given their letter statistics [Conklin and Weisser,
2014]. These patterns may represent structural constraints of a style.

A related approach to improve the music generated by simple Markov models is by adding constraints
on the subsequences that can be generated. For example, Papadopoulos et al. [2014] efficiently avoid all
subsequences greater than a specified maximum order k, for the purpose of avoiding simple regeneration
of long fragments identical to the corpus. A contrasting approach to this problem is to constrain the types
of short words that can be generated based on the analysis of a corpus, i.e., unwords, rather than uniformly
forbidding all words of a specified length or greater.

(4, 2, 1) (2, 1, 2) (4, 1, 1) (1, 4, 1) (3, 4, 1) (1, 4, 3) (2, 4, 1)
(1, 4, 4) (3, 2, 1) (2, 1, 1) (4, 1, 4) (4, 1, 2) (1, 2, 5) (4, 5, 2)

Table 1: The set of unwords that were found in the bagana corpus

To find unwords, the algorithm of Conklin and Weisser [2014] was used to efficiently search the space
of bagana finger patterns for significant unwords. Table 1 lists the resulting set of 14 unwords. These
unwords, all trigrams, are all formed from one or more bigrams that were identified as antipatterns by
Conklin and Weisser [2014]. To use these for evaluating music, their occurrence is given a penalty ac-
cording to the following formula:

f(s) = Mw × u (9)

whereby Mw is an arbitrarily high number and u is the total number of unwords counted in the piece.
This quality measure can be seen more as a hard constraint since unwords never occur in the original

corpus. Therefore it is combined with the first three techniques from this section in the experiment. This is
done by summing the objective functions for both techniques. The use of an arbitrarily high number Mw

will again give priority to the removal of the unwords over the other metric with which this is combined
(low entropy, minimize TM distance, delta cross-entropy).
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4 Variable neighbourhood search

When ensuring the long term coherence of a musical piece by imposing a semiotic structure, a simple
random walk strategy for generation is no longer an option because only in the infinite limit can it be
ensured that random walk will generate a sequence respecting the coherence. Therefore, we turn to
an optimization technique in this paper, whereby the best possible combination of notes needs to be
found to fit a certain style. A bridge between sampling from statistical models and optimizing according
to an objective function is made by comparing different quality measures. The resulting problem is a
combinatorial optimization problem which is computationally complex due to the exponential number of
possible solutions. A variable neighbourhood search algorithm (VNS) is implemented as it is an efficient
optimization method that is used in many more traditional optimization areas including (capacitated)
vehicle routing [Kytöjoki et al., 2007], graph colouring [Avanthay et al., 2003] and project scheduling
[Fleszar and Hindi, 2004]. Hansen et al. [2001] find that VNS can outperform existing heuristics in terms
of both computing time and solution quality for several problems.

A VNS for generating counterpoint based on formal rules from music theory is developed and imple-
mented by the authors [Herremans and Sörensen, 2012]. In later work, this algorithm has been modified
to generate high probability sequences, from which the question arose whether the highest probability se-
quence is desirable [Herremans et al., 2014]. In this paper, different evaluation metrics are implemented
and the obtained results are discussed.

Figure 4: Overview of the VNS.
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Variable neighbourhood search, or VNS, is a local search based metaheuristic. The structure of the
implemented VNS is represented in Figure 4. The VNS starts from an initial fragment that has random
pitches. From this starting fragment the algorithm iteratively makes small improvements (called moves)
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in order to find a better one, i.e., a fragment with a lower value for the objective function. Three different
move types are defined to form the different neighbourhoods that the algorithm uses. The first move type
swaps the top notes of a pair of dyads (swap). The change1 move changes any one pitch to any other
allowed pitch. The last move, change2, is an extension of the previous one whereby two sequential pitch
are changed simultaneously to all possible allowed pitches.

The neighbourhood is the set of all possible fragments s′ that can be reached from the current fragment
by a move type. Infeasible solutions are excluded from the neighbourhood. The first note is fixed to an
A and the last note is fixed to a C. Solutions who do not comply with this hard constraint are considered
infeasible. The local search uses a steepest descent strategy, whereby the best fragment is selected from
the entire neighbourhood. This strategy will quickly steer the algorithm away from choosing fragments
with zero probability dyads, but it does not strictly forbid them (transitions with zero probability are set to
an arbitrarily high cross-entropy). A tabu list is also kept, to prevent the local search from getting trapped
in cycles.

When no improving fragment can be found by any of the move types, the search has reached a local
optimum. A perturbation strategy is implemented to allow the search to continue and escape the local
optimum [Hansen and Mladenović, 2003]. This perturbation move changes the pitch of a fixed percentage
of notes randomly. The size of the random perturbation as well as the size of the tabu lists and other
parameters were set to the optimum values resulting from a full factorial experiment on first species
counterpoint [Herremans and Sörensen, 2012]. The VNS algorithm was implemented in C++ and the
source code is available online1.

5 Results

An experiment was set up in order to compare the outcome of the different evaluation techniques discussed
in section 3. They were all implemented in the objective function of the VNS described in the previous
section. The algorithm stopped after performing 100 000 moves or when no improving solution was found
after 1 000 moves.

5.1 Training data and Markov model

The corpus used in this experiment is described in more detail by Conklin and Weisser [2014]. It consists
of 37 pieces of bagana music that have been recorded by Weisser [2005] between 2002 and 2005 in
Ethiopia (except for two of them recorded in Washington DC). The songs consist of a relatively short
melody, repeated several times with different lyrics, except for the refrain. The entire corpus has been
annotated with the repetition structures described in Section 2 by a bagana expert.

A piece called Tew Semagn Hagere by Alemu Aga, was selected from the corpus as a template piece.
The rhythm within the patterns was kept fixed. The evaluation method based on information contour
described in Section 3 needs a template to calculate the target information contour. The same piece was
also used to get the global structure discussed in Section 2.3.

The output of the algorithm was rendered in the tezeta scale [Conklin and Weisser, 2014] using F for
finger 1 (see Figure 1) with a bagana soundfont and presented to one of the authors, a bagana expert, who
evaluated the fragments discussed in Section 5.2. Her comments on a preliminary experiment resulted in
some improvements of the algorithm, including the fixation of the first note to an A (finger 4) and the last
note to a C (finger 2). The results were then presented again for evaluation.

A first order Markov model was learned from the corpus of bagana music. First order models can
be weak models, as also stated by Lo and Lucas [2006]. Yet in some cases there is not enough data to

1http://antor.ua.ac.be/musicvns
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2 (C) 3 (D) 1 (F) 5 (G) 4 (A)

2 (C) 0.291 0.263 0.015 0.040 0.390
3 (D) 0.238 0.039 0.694 0.018 0.011
1 (F) 0.029 0.330 0.237 0.357 0.047
5 (G) 0.049 0.032 0.401 0.153 0.366
4 (A) 0.502 0.005 0.005 0.281 0.206

Table 2: Transition matrix based on the bagana corpus; finger numbers as indices, and corresponding pitch
class names (Tezeta scale) in brackets

generate a higher order model, as in the case of the bagana corpus. Working with a first order model
allows training on a small corpus, and also gives us a very clear overview of the effects of the different
metrics, without having to look at more complicated second order patterns. The resulting transition matrix
is represented in Table 2.

5.2 Musical results

The VNS algorithm was run with the different metrics from Section 3 as its objective function. The
first three metrics were run independently. Then each of these metrics was combined with unwords and
information contour. For each metric, the evaluation of cross-entropy and the distance of the transition
matrices is shown over time (Figure 5). The average cross-entropy value E (see Section 3.3) of the corpus
is also displayed on the plots in this figure as a reference value. The musical output corresponding to each
of the runs visualised in Figure 5 is displayed in Figures 6, 7 and 8. These music sheets were presented to
the bagana expert for evaluation together with the rendered audio files. Table 3 shows that the generated
music is different from the template piece, where similarity is measured as the percentage of notes that
are the same in both the generated piece and the template piece. When measuring the similarity notes at
the same position within the given structure were compared.

XE DI DE XEu DIu DEu XEi DIi DEi

Similarity (%) 29 36 26 23 29 52 48 36 48
Cover of range (%) 100 100 100 100 100 100 100 100 100
Number of unwords 0 0 0 0 0 0 0 1 0

Table 3: General characteristics of the generated music displayed in Figures 6, 7 and 8

High probability sequences (XE)

Fragment 1 in Figure 6 shows the output of minimizing the cross-entropy with the VNS. As also found
by Lo and Lucas [2006], the minimal cross-entropy sequence can be very repetitive. According to the
transition matrix, the finger transitions corresponding to the note sequences A–C, C–A, F–D and D–F are
indeed high probability transitions, still the global result is not the one a listener would enjoy as there is a
lot of oscillation. The model generates two high probability transition loops (A–C and D–F). Figure 6(a)
confirms that minimizing the cross-entropy using VNS causes a rapid decrease in cross-entropy. This is
similar to the experiment done by the authors with first species counterpoint [Herremans et al., 2014],
where it was shown that VNS is an efficient method for generating high probability sequences, and that
VNS rapidly converges to the minimum cross-entropy sequence. It is also noticeable from Figure 6(a)
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Figure 5: Evolution of cross-entropy and distance of transition matrices over time
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(a) High probability (XE)
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(b) TM distance (DI)

100 101 102

1.6

1.8

2

2.2

2.4

Number of moves

X
E

100 101 102
0.15

0.16

0.17

0.18

0.19

0.2

Number of moves

D
I

(c) Delta cross-entropy (DE)

100 101 102

1

1.5

2

2.5

3

3.5

Number of moves

X
E

100 101 102
0.14

0.16

0.18

0.2

0.22

0.24

D
I

(d) High probability with unwords
(XEu)
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(e) TM distance with unwords
(DIu)
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(f) Delta cross-entropy with un-
words (DEu)
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(g) High probability with informa-
tion contour (XEi)

100 101 102

1.5

2

2.5

3

3.5

Number of moves

X
E

100 101 102

5 · 10−2

0.1

0.15

0.2

0.25

D
I

(h) TM distance with information
contour (DIi)
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Figure 6: Musical output by using the three main evaluation metrics (XE, DI and DE) 
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Fragment 1: High probability (XE) 
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Fragment 2: TM distance (DI) 
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Fragment 3: Delta cross-entropy (DE)

that optimizing with the XE metric does not cause a decrease in the DI metric, but rather undirected
movement.

Minimal distance between TM of model and solution (DI)

When minimizing the distance between the transition matrices of the model and a generated solution with
VNS, we again see a rapid decrease in this metric in Figure 6(b). The cross entropy measure converts
to the average cross-entropy value. This means that by minimizing the DI metric, the cross-entropy
moves toward the average value. The music generated music is not too repetitive and the expert listener
considered the fragment (Fragment 2 of Figure 6) to be very good.

Delta cross-entropy (DE)

The average of the 37 cross-entropy values, calculated with leave-one-out cross-validation as described
in Section 3.3, in the bagana corpus is E = 1.7. The algorithm is able to reach the average cross-entropy
value quickly (Figure 6(c)). The DI metric is not constrained during DE minimization, and changes
randomly throughout the generation process. This is an interesting observation, as minimizing the DI
metric in the previous section did constrain both the DI metric to the minimum and the cross-entropy to
the average value. This means that optimizing with the DI metric is stronger, more constrained, than solely
with the DE metric as it seems to constrain two metrics. The resulting music (Fragment 3 of Figure 6)
was described by the expert as “not easy to sing with”.

Unwords (u)

When minimizing the number of unwords together with the three previously discussed metrics, the evo-
lution of the algorithm is very similar (Figures 6(d), 6(e) and 6(f)). This is probably due to the fact that
unwords sometimes occur when using the other techniques (see Table 3), yet they do not dominate. The
high probability sequence still has a lot of repetitions, though slightly decreased.

The expert found the sequence generated with the DEu metric (Fragment 6 of Figure 7) very good, with
the remark that a player would rather play A–G–F–D in segment A3 instead of A–F–D. This comment
is supported by the higher transition probability A–G and G–F versus A–F. The DEu metric optimizes
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Figure 7: Musical output by using the main three evaluation metrics combined with unwords (u) 
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Fragment 4: High probability and unwords (XEu) 
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Fragment 5: TM distance and unwords (DIu) 
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Fragment 6: Delta cross-entropy and unwords (DEu)

towards the average cross-entropy of the corpus, thus not always preferring the highest probability transi-
tions. The expert also found the segment A3 generated by the DIu metric (Fragment 5 of Figure 7) very
good. The result with the XEu metric (Fragment 4 of Figure 7) is less good as it is too repetitive.

Information contour (i)

Constraining the information contour together with the first three metrics discussed seems to have a pos-
itive influence on the quality of the generated music. When minimizing the cross-entropy, it forces the
music out of the high probability loops and thus prevents oscillation. This results in a much more varied
music (Fragment 7 of Figure 8). The plots in Figures 6(g), 6(h) and 6(i) have a similar evolution as before.

The expert found the piece generated with the XEi metric (Fragment 7 of Figure 8) very good. The
results generated with the DIi metric (Fragment 8 of Figure 8) was considered very good, with exception
of segment A3 which has some issue with the combination of rhythm and pitch. This is an interesting
issue that the authors hope to address in future research by building a statistical model with takes both
duration and pitch into account. The piece generated with the DEi metric was considered as good music,
with the remark that a player would rather play C–D–F–D instead of C–F–D. Similarly as in the above
section, C–D and D–F have much higher transition probabilities than C–F. This can again be explained
because the algorithm that was run with the DEi metric (Fragment 9 of Figure 8) optimizes towards the
average cross-entropy of the corpus instead of the lowest cross-entropy.

6 Conclusions

The results of the experiments conducted in this paper show that there is no single best metric to use
in the objective function. Minimizing cross-entropy can lead to oscillating music, a problem which was
corrected by combining this metric with information contour. Minimizing the distance between the tran-
sition matrix of the model and the generated music also outputs more varied music and seems to constrain
the entropy to the average entropy of the corpus. This relationship is not valid in the opposite direction.
By constraining the cross-entropy to the average value, the DI metric is not minimized. Optimizing with
the DI metric is thus more constraining then optimizing solely with the DE metric. The bagana expert
found that generating with the DI metric produces good musical results. The cross-entropy, TM distance
minimization and delta cross-entropy metric all produce good outcomes when combined with information
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Figure 8: Musical output by using the main three evaluation metrics combined with information con-
tour (i) 
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Fragment 7: High probability and information contour (XEi) 
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Fragment 8: TM distance and information contour (DIi) 
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Fragment 9: Delta cross-entropy and information contour (DEi)

contour. Forbidding the occurrence of unwords in the solution when combined with XE is not enough to
avoid oscillations, because in fact even in the corpus extended oscillations do occur, hence they are not
significant unwords.

While the comments of the bagana expert are very positive, one possible improvement would be to
model and generate into a more complex template with more cyclic patterns. This can equally be handled
by the approach used in this paper simply by specifying an alternative pattern structure for the template
piece. It would also be interesting to build a statistical model with takes both note duration and pitch into
account. This would address some of the comments of the bagana expert concerning the combination of
certain notes with durations.

There are other techniques besides those mentioned above that could be used to improve and measure
musical quality of music generated based on a Markov model. One option would be to enforce repetition
of note patterns or look at a multiple viewpoint system [Conklin and Witten, 1995, Conklin, 2013b] that
includes a viewpoint which models the coherence within finger number sequences. This is already partly
implemented on a high level by generating into a certain fixed structure. Another possible idea would be
to relax the unwords metric to include antipatterns, i.e., patterns that do occur, but only rarely.

All of the metrics above are based on models created from an entire corpus. Conklin and Witten [1995]
additionally consider short term models for which the transition matrix is recalculated based on the newly
generated music. This is done for each event, based on the notes before it. This metric might enforce even
more diversity as it stimulates repetition and the creation of patterns. This interesting approach is left for
future research.

The VNS algorithm allows us to specify a wide variety of constraints. Whenever a neighbourhood
is generated, the solutions that do not satisfy these constraints are excluded. This simple mechanism
allows the user to implement many types of constraints, ranging from fixing the pitch of certain notes, to
forbidding repetition and only allowing certain pitches.

In this research different ways are proposed to construct evaluation metrics based on a Markov model.
These metrics are used to evaluate generated bagana music in an optimization procedure. Experiments
show that integrating techniques such as information flow, optimizing delta cross-entropy, TM distance
minimization and others improve the quality of the generated music based on low order Markov models.
A method was also developed that allows the enforcement of a structure and repetition within the music,
thus ensuring long term coherence. The methods developed and applied in this paper were applied to
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music for the Ethiopian bagana and should be applicable to a wide range of musical styles.
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J. Kytöjoki, T. Nuortio, O. Bräysy, and M. Gendreau. An efficient variable neighborhood search heuristic
for very large scale vehicle routing problems. Computers & Operations Research, 34(9):2743–2757,
2007.

M. Y. Lo and S. M. Lucas. Evolving musical sequences with n-gram based trainable fitness functions. In
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pages 601–608. IEEE, 2006.

C. Manning and H. Schutze. Foundations of Statistical Natural Language Processing. MIT Press, Cam-
bridge, MA, 1999.

A. F. Moore. Categorical conventions in music discourse: Style and genre. Music & Letters, 82(3):
432–442, 2001.

17



J. A. Moorer. Music and computer composition. Communications of the ACM, 15(2):104–113, 1972.

F. Pachet. The Continuator: musical interaction with style. Journal of New Music Research, 32(3):
333–341, 2003.

F. Pachet and P. Roy. Markov constraints: steerable generation of Markov sequences. Constraints, 16(2):
148–172, 2011.

A. Papadopoulos, P. Roy, and F. Pachet. Avoiding plagiarism in Markov sequence generation. In Pro-
ceedings of AAAI 2014, Quebec, 2014.

R. C. Pinkerton. Information theory and melody. Scientific American, 194(2):77–86, 1956.

K. Potter, G. A. Wiggins, and M. T. Pearce. Towards greater objectivity in music theory: Information-
dynamic analysis of minimalist music. Musicae Scientiae, 11(2):295–324, 2007.

O. Sandred, M. Laurson, and M. Kuuskankare. Revisiting the Illiac Suite – a rule-based approach to
stochastic processes. Sonic Ideas/Ideas Sonicas, 2:42–46, 2009.

S. Tipei. MP1: a computer program for music composition. In Proceedings of the Annual Music Compu-
tation Conference, Univ. of Illinois, Urbana, Illinois, pages 68–82, 1975.

N. Tokui and H. Iba. Music composition with interactive evolutionary computation. In Proceedings of
the Third International Conference on Generative Art, volume 17:2, pages 215–226, 2000.

M. W. Towsey, A. R. Brown, S. K. Wright, and J. Diederich. Towards melodic extension using genetic
algorithms. Educational Technology & Society, 4(2):54–65, 2001.

C. Truchet and P. Codognet. Musical constraint satisfaction problems solved with adaptive search. Soft
Computing-A Fusion of Foundations, Methodologies and Applications, 8(9):633–640, 2004.

S. Weisser. Etude ethnomusicologique du bagana, lyre d’Ethiopie / Ethnomusicological study of the
Bagana lyre from Ethiopia. PhD thesis, Universite Libre de Bruxelles, 2005.

S. Weisser. The Ethiopian lyre bagana: An instrument for emotion. In Proceedings of the 9th International
Conference on Music Perception and Cognition, pages 376–382, 2006.

S. Weisser. Emotion and music: The ethiopian lyre bagana. Musicae Scientiae, 16(1):3–18, 2012.

R. P. Whorley, G. A. Wiggins, C. Rhodes, and M. T. Pearce. Multiple viewpoint systems: Time complexity
and the construction of domains for complex musical viewpoints in the harmonization problem. Journal
of New Music Research, 42(3):237–266, 2013.

I. H. Witten, L. C. Manzara, and D. Conklin. Comparing human and computational models of music
prediction. Computer Music Journal, pages 70–80, 1994.

I. Xenakis. Formalized Music: Thought and mathematics in composition. Number 6. Pendragon Pr, 1992.

18


