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Abstract: Music is capable of conveying many emotions. The level and type of emotion of the
music perceived by a listener, however, is highly subjective. In this study, we present the Music
Emotion Recognition with Profile information dataset (MERP). This database was collected through
Amazon Mechanical Turk (MTurk) and features dynamical valence and arousal ratings of 54 selected
full-length songs. The dataset contains music features, as well as user profile information of the
annotators. The songs were selected from the Free Music Archive using an innovative method (a
Triple Neural Network with the OpenSmile toolkit) to identify 50 songs with the most distinctive
emotions. Specifically, the songs were chosen to fully cover the four quadrants of the valence-arousal
space. Four additional songs were selected from the DEAM dataset to act as a benchmark in this
study and filter out low quality ratings. A total of 452 participants participated in annotating the
dataset, with 277 participants remaining after thoroughly cleaning the dataset. Their demographic
information, listening preferences, and musical background were recorded. We offer an extensive
analysis of the resulting dataset, together with a baseline emotion prediction model based on a fully
connected model and an LSTM model, for our newly proposed MERP dataset.

Keywords: emotion prediction; music; music emotion dataset; affective computing

1. Introduction

With the explosive growth in the amount of music available online, developments in
the field of Music Information Retrieval (MIR), such as models to classify and analyse music,
have become ever more important [1]. One of the MIR tasks that has gained increasing
attention is the automatic recognition of emotions from music, or Music Emotion Retrieval
(MER). The field of MER focuses on constructing statistical, machine learning models
that can predict perceived emotion based on music audio. This field has grown rapidly
in the last decade or so, partly due to the growth of the music industry in the digital
space, which makes it easier for researchers to access large datasets of music. Because
emotion is subjective and often vaguely defined in studies [2], different listeners may
have differing views on the emotion they perceive from a song. This results in noisy
emotion labels in music datasets. In order to attempt to reduce this noise, our research
explores whether we can find reasons for the difference between listeners. We thus explore
whether similarities between listeners translate to similarities in the perception of emotion
in music. Identifying such similarities would contribute to the topic of personalizing
dynamic MER, allowing models to be customised to individuals. With this objective in
mind, we present a newly gathered large open-source dataset (https://www.kaggle.com/
kohenyan/music-emotion-recognition-with-profile-information(accessed on 29 December
2022)) of music labelled with emotion ratings, as well as profile information about the raters
(e.g., gender, musical preferences, etc.). We refer to this dataset as MERP, which stands
for Music Emotion Recognition with Profile information (MERP). The MERP dataset is
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available online, together with baseline models for emotion prediction (https://github.
com/dorienh/MERP) (both with and without using listener profile information (accessed
on 29 December 2022)).

Despite the surge of interest in MER, the number of datasets with emotion annotations
is limited, especially those with dynamic annotations, i.e., ratings that are collected continu-
ously throughout the piece. To the authors’ knowledge, the DEAM dataset (1802 fragments
by 15–32 annotators) [3], the Moodswings dataset (240 fragments by 7–23 annotators) [4],
and the MuVi dataset (81 fragments by 5–9 annotators) [5] are the only datasets that
offer music with dynamic emotion (arousal and valence) annotations. For a more com-
plete overview of existing music datasets with emotion annotations, the reader is referred
to Chua et al. [5]. In order to train any powerful machine learning model, the availability
of big datasets is crutial. This was an important motivation for creating a new dataset for
full-length (creative commons) music pieces with high-quality, dynamic emotion (valence-
arousal) annotations.

There are many individual differences in music perception stemming from the lis-
tener’s musical background, genre preferences, and more. Identifying listener features
that influence affect perception may potentially improve MER for different listener groups.
Hence, in this work, we present the MERP dataset, which is catered towards exploring
whether MER can be improved given additional listener profile information. The dataset
contains copyright-free, full-length musical tracks with dynamic ratings on Russell’s two-
dimensional circumplex model [6], as described in Section 2.1. To our knowledge, this is
the first work to present a publicly available dataset of dynamic affect labels of full-length
musical pieces, alongside profile information of participants.

In the remainder of this manuscript, we provide a brief background of emotion
models, and the effect of profile features on emotion perception (Section 2). This is followed
by a thorough description of the dataset collection process (in Section 3), followed by a
statistical analysis and visualisations in Section 4. Extensive preprocessing and denoising
was performed to increase the quality of our data. In Section 5, we use the resulting dataset
to train a baseline emotion prediction model and evaluate the influence of the different
profile features. The benchmark results for this dataset are listed in Section 6, followed by
the conclusion.

2. Related Work

We provide a brief overview of related work that informed some of the decisions made
while carrying out this study. We start by exploring different models of emotions, and then
move on the how different profile features may influence emotion perception.

2.1. Categorical versus Dimensional Models of Emotion

The relationship between music and emotions has been scientifically explored for
at least a hundred years (e.g., Seashore [7]), with a surge of interest beginning in the
1950s by Meyer [8], and expanding even more widely in recent decades, both in music
psychology [9–11] and Music Information Retrieval (MIR) [5,12–14]. Generally, there
are two main ways of capturing and representing emotion in music: categorical and
dimensional [15]. Representations that use discrete emotional terms fall into the former
type. Music datasets that use this type of emotion representation include the CAL500
dataset [16], which provides a three-scale rating of eighteen emotions for each song, and
the Emotify dataset [17], which classifies each song into one of nine categories of the
Geneva Emotional Music Scales [18]. As summarized by Barthet et al. [19], many different
types of emotion models with categorical labels exist. Some studies use discrete terms
directly [20], while other studies propose clusters or groups of discrete emotional terms.
For instance, Trohidis et al. [21] propose twelve emotion clusters, while Hu and Downie
[22] propose five clusters for the Audio Mood Classification task of the annual Music
Information Retrieval Evaluation eXchange (MIREX). Dimensional models, on the other
hand, attempt to abstract the representation of all emotions along two or more dimensions.

https://github.com/dorienh/MERP
https://github.com/dorienh/MERP
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A widely known two-dimensional model of emotion is Russell’s circumplex model of
affect [6]. In this model, valence (V) represents the positivity or negativity of emotion
(from unpleasant to pleasant), and arousal (A) refers to the intensity/energy level of the
emotion (from low to high). In this way, all emotions can be represented using these two
dimensions of V and A. The Lakh-Spotify Dataset [23] is one of the latest datasets that uses
symbolic music paired with emotion labels in terms of VA. Valence and Arousal labels have
also been used for tasks such as controlling emotion in generated music [24–27] as well as
variation detection in emotion from music [28]. Due to the nature of the two representations,
MER techniques for analyzing categorical annotations usually involve classification, while
dimensional annotations require regression techniques.

We should note that categorical and dimensional emotion representation models
are closely related, and dimensional representations are often utilised in a categorical
manner. For example, Bischoff et al. [29] divide Thayer’s two-dimensional Energy and
Tension model [30] into four quadrants of the two-dimensional plane, while Han et al. [31]
section the two-dimensional model into eleven subdivisions, where each sub-dimension
is represented by a discrete emotional term. Soundtracks [32] is a dataset that collected
both categorical and dimensional annotations, and compared the two representations of
emotion. Their results show that the perceived emotional labels collected through both
representations are largely comparable for the Soundtracks dataset. More recently, [25]
provided a method for mapping discrete emotional terms onto Russell’s dimensional model.
Finally, Chua et al. [5]’s MuVi dataset provides both dynamic ratings along the valence and
arousal dimensions throughout the song, as well as static emotion labels (categorical labels
for the entire song) for music and video stimuli.

Although these two types of emotion representations are similar, dimensional rep-
resentations are more versatile in two ways. Firstly, due to the continuous nature of
dimensional representations, they are able to represent different degrees of emotion [33],
while categorical representations do not typically capture the degree of emotion (with some
exceptions). Secondly, with dimensional representations, it is more practical to represent
changes in the emotion of music over time [15,34]. Therefore, we see that categorical emo-
tion labels are often used for making static annotations, i.e., a single annotation for a song
or excerpt. Dimensional representations, on the other hand, are better suited to capture
changes in emotion throughout a song. The DEAM dataset [3], which helped inspire this
work, contains both static as well as dynamic dimensional emotion annotations. In this
work, we use valence and arousal annotations to capture how perceived emotion evolves
dynamically over time throughout the length of entire songs. This design decision was
made because dynamic annotations capture the dynamic nature of music and the temporal
evolution of emotional content. Furthermore, dynamic labels can be aggregated to create
static labels when needed.

2.2. Impact of Listener Demographics on Perceived Emotion

Emotion perception during music listening can depend heavily on listener charac-
teristics [35]. Pearce and Halpern [36] and Lima and Castro [37] both found similarities
and differences in emotion perception of music among older and younger adults. They
observed that the extent of sadness perceived decreases as age increases. Musical training
was also reported to have an impact on emotion perception. In addition, lower frequencies
were rated with lower valence by musicians in a study by [38]. This finding may be due
to the impact of musical training on one’s perception of musical cues and their relation
to conveyed emotion [39]. Moreover, Schedl et al. [40] found higher agreement in labels
between participants with musical training and those who play an instrument compared
with those lacking training. Lima and Castro [37] similarly observed a correlation between
number of years of musical training and accuracy of music emotion categorization.

Another listener feature that may have an impact on perceived emotion is culture:
while listeners are generally able to accurately identify emotion in music from cultures
foreign to them [41,42], cultural background has been reported to impact the participant’s
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perceived emotion agreement of music. A comparison study between a Greek group of
participants and a group with varying cultures reported that participant agreement was
higher in the Greek group [43]. Lee et al. [42] found that participants from Brazil, South
Korea, and the US mostly agreed when recognising simple emotional characteristics, but
showed disagreement when recognising more complex emotional characteristics such as
dreamy and love. Stereotypes of a culture may also have an impact on one’s perception
of music from specific cultures [44]. Wang et al. [45] compared the impact of musical
background and cultural background on the perception of emotions by Chinese and
Western participants. They found cultural background to have a larger impact as compared
to the musical background of a participant. Such findings suggest that people from the
same cultural background may show higher levels of agreement with regard to perceived
emotion. Music from different cultures has also been shown to convey emotion differently
through various musical features [46]. Chen et al. [47] managed to improve the quality
of a music valence prediction model by taking cultural differences in music features into
account. Due to the importance of all these listener features, we included a large number of
profile features in our dataset. In the next section we will detail the procedures followed to
create our new dataset.

3. Data Gathering Procedure

To create a new dataset, we could approximate a categorically labelled dataset by
crawling the web and finding emotion tags on resources such as Last.fm and AllMusic, as
done in [48–50], however, this would not provide us with curated, dynamic data. Datasets
with dynamic valence and arousal labels are typically collected manually. Datasets such
as DEAP [51] and PMEmo [52] go one step further and also include physiological signals,
which requires participants to be present physically. Alternatively, in an effort to collect
larger quantities of affect labels in a shorter amount of time, although with a potential
loss in accuracy, crowd-sourcing on platforms such as Amazon Mechanical Turk (MTurk)
has also been explored [3,53–56]. Some researchers utilize a mix of both online and offline
collection methods [57,58], or even use predictive models such as AttendAffectNet [59] for
the emotion labeling [60]. Regardless of the data collection method, it is important for each
musical excerpt in the dataset to be labelled by multiple participants in order to account for
subjectivity. Participant agreement can be used to identify anomalies in the labels, or be
aggregated to better represent the general response.

We opted for large-scale collection in this work, and used the MTurk platform. Given
the noise that often comes with this collection method, extra attention was put on pre-
processing the data and filtering out noisy annotations, as is explained in detail in the
remainder of the section. Additionally, each participant received four stimuli previously
labelled by an expert in the DEAM dataset. This offers us a benchmark to filter out low-
quality annotations.

3.1. Participants

We collected data through Amazon Mechanical Turk (MTurk). The listening study was
carried out online, as a Human Intelligent Task (HIT) on the platform. There are two types
of participants, ‘master’ and ‘non-master’ participants. Master participants are generally
more reliable, as they have to go through a screening process to prove their reliability before
earning the master title. A total of 452 participants completed the task on MTurk, of which
171 were master participants and 286 non-master participants.

At the beginning of the listening study, profile information of the participants was
collected through 9 brief questions. With the data collection platform in mind, the questions
were set to be factual and easy to answer. They also served to check the attentiveness of par-
ticipants [61]. The questions can be categorised into 3 sections: demographic information,
listening preferences, and musical experience. For demographic information, participants
were asked about their age, gender, country of residence, and country of musical encultura-
tion. For listening preferences, we asked them what language of music they like to listen to
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most, as well as their favourite genre of music. As for musical experience, they were asked
if they were actively playing at least one instrument, whether they have received formal
training, and if they have, how many years of musical training they received. We describe
the groups of participants for each profile in Section 4.2, and explore whether the profile
information of participants is helpful in an automatic music emotion recognition task in
Section 5.

Using Amazon Mechanical Turk (MTurk) allowed us to access a large pool of par-
ticipants from different continents in a quick and convenient way. To ensure quality, we
applied a novel technique of having participants rate benchmark songs so we could do
basic filtering, which we enhanced with other preprocessing techniques as described in
Section 4.1.

3.2. Stimuli

To ensure that the collated dataset would be publicly accessible, the stimuli were
selected from readily available Creative Commons sources, namely the Free Music Archive
(FMA) [62] and the Database for Emotional Analysis in Music (DEAM) [3].

The FMA is a large database that consists of 106,574 full-length tracks. From the FMA
all-time chart, we looked at the top 1000 songs listened to, and filtered out the songs shorter
than 30 s and longer than 10 min. Due to budget constraints for the study, we could not
annotate all of these songs and we further narrowed the selection. To do this, we used an
existing, trained emotion prediction model [63] and selected songs which had the most
distinctive emotion. To do this, we extracted features using the OpenSmile toolkit [64],
which were then fed into a Triple Neural Network, trained as described in [63], to determine
a static (single) arousal value and valence value for each song. The valence-arousal values
of the songs are plotted in Figure 1, where we can see that the distribution of the songs is
relatively sparse in the high arousal/low valence quarter, as well as the high valence/low
arousal quarter. This is not unexpected, as the valence and arousal of music are often
related. For example, a sad song is often slow and low in energy, which would make
it low in both arousal and valence. To ensure that the stimuli represent emotions from
all quadrants of the valence arousal graph, we first binned both valence and arousal of
each song into 5 categories. The categories are low valence and low arousal; low valence
and high arousal; mid valence and mid arousal; high valence and low arousal; and high
valence and high arousal. For each of these 5 categories, we selected 10 songs that were the
most distinct from other categories, resulting in the final 50 songs that were used in our
study. Figure 1 highlights the 50 songs selected as stimuli, visualised on the valence and
arousal graph.

In addition, 4 song excerpts (each 45 s in length) were selected from DEAM. These
excerpts also originate from the FMA dataset, and have annotated (dynamic) valence
arousal values. These songs were presented to every participant, hence the ratings for
these songs could be used as a quality benchmark to filter out noisy entries during the data
preprocessing stage (see Section 4.1). The total length of the 54 songs selected is about 8778 s,
which is approximately 146 min, or 2 h and 26 min. The shortest song is around 31 s, while
the longest song is 4 min and 58 s, and the mean length is 2 min and 52 s. Table 1 shows the
total duration across the 54 music stimuli based on their Valence/Arousal category.



Sensors 2023, 23, 382 6 of 23

Figure 1. Representation of the predicted arousal and valence value of the top 1000 songs of the FMA
(after filtering on length). The coloured dots represent the songs selected for each of the 5 categories
for the final user study.

Table 1. Total duration of all of the stimuli for each Arousal-Valence category (mins).

Valence Arousal Minutes

low low 34.1
low high 23.0
mid mid 31.5
high low 16.0
high high 38.7

3.3. Procedure

The listening study was organised on a single web page on Amazon MTurk, in which
all questions were listed and could be scrolled through freely by participants during
the answering process. The participants were first asked a series of 9 questions about
themselves. They were then introduced to the task, as well as the definitions of valence and
arousal, along with examples of songs that have high and low arousal and valence. Note
that in this work, we focus on perceived emotions, i.e., the emotions the listener perceives
as being expressed by the music. The examples were accompanied by a 2-dimensional
valence/arousal graph, with a dot that marks where the example piece is positioned on the
VA graph. Participants were hence provided with examples of the graphical representation
of emotion in music so that they become familiar with the meaning of valence and arousal.

A total of 24 songs were presented to each participant, of which, 4 songs were the
benchmark DEAM songs which were presented to all of the participants. The remaining
20 songs were randomly selected from our 50 stimuli. The 4 DEAM songs were presented in
the task as the 1st, 4th, 7th and 10th stimuli, though not in the same order. A very generous
2 h were set as a maximum duration for this listening task, while participants were told
that the study should take about 30 min.
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During the listening study, the participants were required to label VA values simulta-
neously while listening to the stimuli in real-time. We captured their mouse position over
a two-dimensional VA graph throughout a song; this is unlike some other studies where
participants labelled Valence and Arousal separately [3], listened to the song multiple
times [58] or were allowed to edit their answers [2]. In this way, we were able to capture
the initial impressions of the participants while keeping them constantly engaged in the
labelling task.

Han et al. [65] shows that dynamic tracking in music emotion recognition is more in
line with the characteristics of music than static processing. For participants to familiarise
themselves with the valence arousal graphical labelling interface (Figure 2), which dynami-
cally tracks the user’s mouse position after they press play on a song, a practice song is
first provided prior to the actual questions. Clicking on the centre of the graph will begin
the streaming of the music, as well as the recording of their mouse position on the graph.
Subsequently, for each stimulus, a valence arousal graphical labelling interface is displayed,
along with reminders of the definition of valence and arousal, and of the instructions (to
constantly indicate their perceived emotion in valence and arousal throughout the song).
As full task completion was not obligatory, on average, each participant labelled 13.8 songs.
The javascript code of the developed rating interface that integrates with MTurk is avail-
able online (https://github.com/dorienh/MERP/blob/master/amazon_Merged.html(29
December 2022)). This interface samples the participants’ mouse position at a frequency of
10Hz to collect the valence and arousal values.

Figure 2. The interface through which valence and arousal values were captured via mouse tracking
in the listening study.

4. Dataset Analysis and Visualisation
4.1. Data Filtering

Data collected through online crowdsourcing methods is generally known to be
noisy [66], especially so when collecting subjective data. Multiple methods of filtering were
carried out to identify (and remove) entries of low integrity from the collected dataset.

4.1.1. Step 1—Identifying Erroneous Entries from Profile Information

We first began with a screening of the participants. Of the initial 452 participants, 5 of
them did not complete the task and were removed from the dataset, leaving a total of 447
after this initial filtering. Even though participants were instructed to only complete the
task once, due to releasing the task in multiple batches, 26 participants submitted entries
in more than 1 batch. 20 out of these 26 participants submitted conflicting entries when

https://github.com/dorienh/MERP/blob/master/amazon_Merged.html
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answering the profile questions in the first half of the task, and were removed from the
dataset. Submissions by participants who made obvious mistakes while answering profile
questions in the first half of the task were also disregarded. For instance, some participants
had negative numbers or numbers close to 2000 when asked how many years of formal
music training they had received. Other participants indicated that they had not received
formal music training, yet entered a positive number for the number of years they had
received training. As a result, a total number of 417 participants remained in the dataset
after this step.

4.1.2. Step 2—Discarding Trials with Abnormal Length

Due to inconsistent sampling frequency caused by variables such as network connec-
tion, system latency, browser used, and CPU usage [54], some of the collected emotion
ratings for the same songs were of slightly varying lengths. For example, a 30 second
excerpt should have 300 labels but instead had too few, or too many. Trials that were too
short were discarded, to avoid data fabrication. For trials that were too long, a threshold
of a difference of 20 data points (2 s) was determined to be of acceptable distance from
the length of the audio features extracted from the songs. Any additional ratings after the
song ended (max. 20) were removed. After this operation, some of the ratings of the 4
songs from the DEAM dataset, which are meant to provide us with a common benchmark
amongst all participants, would have been removed. To avoid this, we further removed
participants who had a rating for a DEAM song shortened. This left us with 358 participants
and 4441 trials.

4.1.3. Step 3—Discarding Entries that Greatly Differ from DEAM

To determine the integrity of the affect labels collected, we compared them with the
labels provided in the DEAM dataset. The labels in the DEAM dataset were averaged
across participants, and for each time step, we checked whether our collected annotations
fell within 2 standard deviations of the average DEAM label. Songs whereby more than
50% of the time steps were within this threshold, were considered to be acceptable. All 4
DEAM songs for each participant had to fulfil this check, or the participant was discarded.
After this procedure, we were left with 277 participants and 3482 trials, as displayed in
Table 2.

4.1.4. Resulting Dataset

An overview of the resulting data (before and after preprocessing) collected through
MTurk for both master as well as non-master participants, is shown in Table 2. Each rated
stimulus is considered a trial.

Table 2. Overview of the participants and trials in dataset.

Raw Data
Participant Type Number of Participants Number of Trials

Master 139 1722
Non Master 219 2719

Total 358 4441

After Preprocessing
Participant Type Number of Participants Number of Trials

Master 128 1588
Non Master 149 1894

Total 277 3482
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4.2. Profile Visualisations

One of the novel aspects of this dataset is the inclusion of profile information that
was gathered about the raters. In this section, we visualize the demographics of the
277 participants. In Figure 3, we can see an overview of the proportion of participants that
fall into each profile category. The profile information was binned as seen in the figure.
This binning will be useful in the later sections on emotion prediction models. Section 5.1
further describes how the profile information is treated and utilised for emotion prediction.

The first 3 feature bars of Figure 3 show common demographic profile features, e.g.,
age. As depicted in Figure 4, most of the participants are young adults in their twenties
to thirties. The age feature was divided into 4 bins. Participants below 25 years of age are
considered youth, between 26 and 35 years of age are young adults, between 36 and 50
years of age are adults and above 51 are elders. After binning, 52.7% of participants are
youth, 24.2% are young adults, 13.4% are adults and 9.7% are elders. The second bar in
Figure 3 shows that there are 57.0% male and 43.0% female participants. The third bar
depicts the country of residence of participants. The majority of the participants are from
the USA (52.7%) and India (42.6%) as the MTurk task was released to these two countries.
The remaining 4.7% includes participants from Great Britain (1.4%), Italy (0.7%), South
Africa (0.4%), Russia (0.4%), Indonesia (0.4%), Armenia (0.4%), American Samoa (0.4%),
Romania (0.4%) and Brazil (0.4%).

Figure 3. Proportion of participants for each of the profile features.
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Figure 4. Age of participants.

The fourth feature bar, labelled ‘enculturation’ in Figure 3, depicts a slightly more
unique feature which represents the musical enculturation of participants—which country’s
music do participants identify with most. As one might expect, the division looks very
similar to the bar above it, implying that country of residence and country of musical
enculturation are related. The percentages of each country are as follows: USA (52.7%),
India (40.8%), Great Britain (1.8%), Italy (0.7%), Japan (0.4%), Ecuador (0.4%), Mexico (0.4%),
South Africa (0.4%), Russia (0.4%), Armenia (0.4%), Colombia (0.4%), American Samoa
(0.4%), New Zealand (0.4%), United Arab Emirates (0.4%) and Brazil (0.4%).

The fifth and sixth feature bars of Figure 3 pertain to the listening preferences of
participants. With regard to the preferred language of lyrics, since participants are mostly
from the USA and India, it is unsurprising that for the fifth feature ‘language’, songs
with English (72.2%) and Tamil (18.1%) lyrics are the favourite of most participants. The
remaining 9.7% include the languages Malayalam (3.2%), Hindi (2.5%), Italian (0.7%),
Telugu (0.7%), Armenian (0.7%), Japanese (0.7%), Korean (0.4%), German (0.4%) and
Bengali (0.4%). As for the preferred genre of participants shown in the sixth bar named
‘genre’, Rock (31.8%) had the highest percentage, followed by Classical (14.1%) and Pop
(13.7%) music. Many other genres were grouped as ’other’ in the bar chart as they were
small in comparison, they include Rhythm and Blues (8.3%), Indie Rock (6.9%), Country
(6.9%), Jazz (5.4%), Electronic dance music (2.2%), Metal (2.2%), Electro (1.4%), Techno
(1.1%) and Dubstep (0.7%).

The seventh to ninth feature bars in Figure 3 represent the musical experience of
participants. The seventh feature, labelled ‘instrument’, represents the proportion of
participants that are actively playing at least one instrument. 45.8% of them indicated that
they were actively playing an instrument. The eighth bar, named ‘training’, depicts the
proportion of participants that have received formal musical training. A total of 57.4% of
participants indicated that they received formal musical training, while 42.6% indicated that
they never received formal music training. Since 42.6% of participants have not received
formal musical training yet 45.8% are actively playing an instrument, we can surmise that
at least 3.2% of participants are self-taught. The ninth bar, labelled ‘duration’, reflects the
number of years participants have received formal training. The 42.6% of participants who
had not received formal training are included in the ninth feature bar as the participants
who have received 0 years of training. A total of 5.8% participants underwent 1 year of
training, 15.9% had 2 years of training, 13.0% had 3 years, 5.8% had 4 years, and 7.9% had
5 years of training. Overall, 48.4% of participants received between 1 and 5 years of formal
musical training. 0.9% of participants indicated having 6 or more years of training, the
largest value being 31 years of training.

In the tenth feature bar of Figure 3, the proportion of MTurk master to non-master
participants is represented. A total of 46.2% of participants are master participants while
53.8% of participants are non-master participants. It is noteworthy that 128 master par-
ticipants were retained from the original 172 master participants after our preprocessing,
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while only 149 non-master participants were retained from the original 280 non-master
participants. The retention percentage of 74.4% for master participants as compared to only
53.2% for non-master participants implies that master participants are indeed more reliable
compared to non-master participants.

We should note that the profile binning or grouping for non-boolean type profiles
was arbitrarily determined in this work. For example, as the age of participants was
largely skewed towards the young adult age, the two younger groups are of smaller age
ranges while the two older groups are of larger age ranges. In future research, one could
experiment with different configurations, or further testing may be performed to determine
more representative age bins that show a difference in perceived emotion from the music.
The same can be said for the preferred genre profile type. In this study, the participants
mainly preferred rock and classical songs. Some of the favored genres were not represented
by many participants, and were grouped under ’Other’. Perhaps with better representation,
more significant differences between genres would be revealed.

4.3. Statistical Differences in Affect Ratings Between Profile Groups

We analysed the collected data in order to determine whether there are significant
differences in terms of valence and arousal annotations from participants of various de-
mographic groups. As statistical testing requires independent samples, the dynamic affect
labels were averaged to a single value per participant per song. Additionally, because the
valence and arousal ratings were not normally distributed, a non-parametric test was used.
The non-parametric Kruskal Wallis test [67] was used for each of the 10 profile features to
identify whether statistically significant differences exist between the emotion ratings of
the different profile groups. Table 3 shows the results of the Kruskal Wallis tests. p-values
lower than the threshold value of 0.05 are marked in bold so as to highlight that there is a
significant difference in emotion ratings between profile groups of that profile feature.

Table 3. Resulting p-values from the Kruskal Wallis tests run on each profile feature with valence
and arousal ratings, respectively. Values in bold are statistically significant.

Profile Type Valence p-Value Arousal p-Value

age 0.0191 0.4907
gender 0.2166 0.1851
residence 0.0156 0.0125
enculturation 0.0000 0.0198
language 0.4050 0.1729
genre 0.0767 0.0001
instrument 0.0002 0.0383
training 0.0009 0.0313
duration 0.0034 0.0022
master 0.5507 0.0015

For the profile and affect type pairs that have p-values below 0.05, we carried out
Dunn’s test [68] as a post hoc test, with Bonferroni correction [69]. The resulting p-values
of the Dunn’s test indicate which profile features are statistically different. For each bold
value in Table 3, we report the profile features that are significantly different, along with
their p-values below. Our findings are in line with Schedl et al. [40], who found differences
in music perception only for some user groups.

A statistical difference was found between valence ratings provided by young and
adult raters (p = 0.0484) as well as youth and elder raters (p = 0.0291). The data suggests
that the youth group tends to give higher valence ratings as compared to the two other
groups. Valence ratings from the young-adult age group seem to lie in between the other
groups, suggesting that the perceived valence of music may decrease with age.
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Both valence and arousal ratings from raters from a different country of residence
showed a significant difference. For valence, however, the post hoc test p-values were larger
than 0.05 after Bonferroni correction. In particular, between the USA and India participants,
the p-value was 0.0560, which is close to the threshold for significance. As for arousal,
a significant difference was found between USA and India (p = 0.0167). Participants
residing in India had a larger proportion of ratings that were near the origin (0, 0), for both
affect types, as compared to participants residing in the USA. In general, the ratings from
participants residing in the USA were more evenly spread out as well, while ratings from
participants residing in India were skewed towards the positive end of both affect types.

With regard to raters with a different country of music enculturation, a significant
difference between the USA and India groups was found for both valence (p = 0.0076)
and arousal (p = 0.0484), and between the USA and other countries, only for valence
(p = 0.00004). It is worth noting that there is only one participant representing the ‘other’
group, hence we did not take this value into consideration for the analysis. Furthermore,
as there is a larger overlap between the participant groups for country of residence and
country of music enculturation, similar observations of the data can be made.

For listeners with a different preferred genre of music, we see a statistically significant
difference in terms of valence ratings. Interestingly, the differences are between the classical
genre and each of the other groups. Namely, between classical and rock (p = 0.0004),
classical and pop (p = 0.0766), and classical and other (p = 0.0001). As compared to the
other three genres, participants who prefer classical music mostly rated valence closer to
the origin. Other groups tended to give higher positive valence ratings.

Participants who actively play an instrument compared to participants who do not,
have a larger proportion of ratings near the origin (0, 0). With regard to valence (p = 0.0002),
participants who do not actively play an instrument had the most ratings near 0.5 valence.
As for arousal (p = 0.0383), other than the larger proportion of ratings near the origin by
participants who do not actively play an instrument, both groups are generally skewed
towards more ratings in the positive arousal quadrant rather than the negative quadrant.

The distributions for participants who have received formal training and those who
have not (the eighth profile information-training), closely resemble those of participants
who actively play an instrument and those who do not (the seventh profile information-
instrument). This is observed despite the fact that there are 43 participants who have
received formal musical training but are not actively playing an instrument, and another
11 participants who are actively playing an instrument but have not received formal
training. A statistically significant difference is found between these two groups, for both
valence (p = 0.0009) and arousal (p = 0.0314). This makes sense, as most participants who
play an instrument learned to do so through formal musical training.

The group of participants who have not received formal training coincides with the
group of participants who have received 0 years of musical training. With regard to arousal
ratings, the group of participants with 1 to 5 years of training is significantly different to
the other two groups: 0 years (p = 0.0145) and more than 5 years of training (p = 0.0171).
As for valence, a significant difference was found between the group of participants with
1 to 5 years of training and the group with 0 years of training (p = 0.0024). The lack of
significant difference between the group of 0 years and the group of more than 5 years of
training suggests that perhaps the length of duration of training may not have an obvious
impact on the perceived affect. The statistical difference noted in both affect types may be
due to the large proportion of ratings near the origin, given by the group with 1 to 5 years
of training, and not found in the other two groups.
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Lastly, the ratings of master MTurk participants showed a statistical difference with
non-master MTurk participants where arousal is concerned (p = 0.0015). Non-master
participants had a large proportion of ratings near the origin, while master participants
showed a tendency to rate with higher arousal values. Though the same is observed in
valence, the difference between the two groups is not substantial enough to be significant.
This peak of values near the origin is observed in many of the profile types aforementioned,
which suggests that perhaps those groups have more non-master participants. This is
found to be the case for country of residence and enculturation, where approximately 73%
of the India group are also non-master. It is also possible that there is a subset of non-master
participants that cause this peak. Alternatively, since the mouse pointer is positioned at the
origin when the experiment begins, it is possible that non-master participants move their
mouse less, or respond later.

The significant differences found above confirm the importance of capturing profile
information in a dataset of valence and arousal ratings of music. In the next section, we
predict valence and arousal ratings from the audio and profile information captured in this
newly proposed dataset, and thus provide a baseline model. The significant differences
found between various groups for the different profile types suggest that affect prediction
may be improved and refined by feeding the model this information; this is what we will
test in our experiments.

5. Emotion Prediction Models

In this section, we provide a baseline prediction model for valence and arousal. We
provide baseline results for models that use audio features only, as well as models that
use both audio features and profile information of participants. We explore two types of
model architectures for our music emotion prediction tasks: a fully connected model, and a
long short-term memory (LSTM) model. The models are simple in design and intended
to be supplementary performance benchmarks on the dataset. In future work, more
state-of-the-art methods such as convolutional neural networks [70–76], or transformer
architectures [60,77,78] could be used with the dataset for further experimentation with
profile information and its uses for building improved MER models.

5.1. Feature Extraction and Label Aggregation

We use two types of features to build our emotion prediction baseline models: audio-
based features, and profile features (of the raters).

5.1.1. Audio Features

We extracted audio features from the audio files using the openSMILE toolbox [64].
We used the openSMILE configuration file from the 2015 ‘Emotion in Music’ task from
the MediaEval Multimedia Evaluation Campaign. Following existing literature [54,79], a
total of 260 low-level features, often referred to as the IS13 acoustic feature set (shown in
Table 4) were extracted for every 500 ms segment with frame size 60 ms and step size 10 ms,
resulting in a vector of features for every 0.5 s of music [3].
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Table 4. List of 260 features extracted when using the configuration file IS13_ComParE_lld-func.conf
from openSMILE. For a detailed description of these features, the reader is referred to [80].

Feature Name Size

F0final 4
audSpec_Rfilt 104

audspecRasta_lengthL1norm 4
audspec_lengthL1norm 4

jitterDDP 4
jitterLocal 4
logHNR 4

pcm_RMSenergy 4
pcm_fftMag_fband1000-4000 4

pcm_fftMag_fband250-650 4
pcm_fftMag_mfcc 56

pcm_fftMag_psySharpness 4
pcm_fftMag_spectralCentroid 4
pcm_fftMag_spectralEntropy 4

pcm_fftMag_spectralFlux 4
pcm_fftMag_spectralHarmonicity 4

pcm_fftMag_spectralKurtosis 4
pcm_fftMag_spectralRollOff25.0 4
pcm_fftMag_spectralRollOff50.0 4
pcm_fftMag_spectralRollOff75.0 4
pcm_fftMag_spectralRollOff90.0 4
pcm_fftMag_spectralSkewness 4

pcm_fftMag_spectralSlope 4
pcm_fftMag_spectralVariance 4

pcm_zcr 4
shimmerLocal 4

5.1.2. Profile Features

The profile features were binned into categories, such that they are numerically repre-
sented with values ranging from 0 to 1, each bin represented by a float value. In a binary
example, such as whether a participant actively plays an instrument, ‘no’ is represented by
0 and ‘yes’ is represented by 1. This way, the participant’s profile information is classified
into bins and represented by a number. We chose to build a separate model for each profile
feature so that we can more clearly identify and gain insight into which profile features are
useful to improve prediction accuracy.

5.1.3. Label Averaging over Participants

After collecting labels through MTurk, we have multiple ratings per song. In our final
training and test dataset for predicting emotions, we want to have one value per song. We
therefore averaged the labels for all (types of) raters per song. More specifically, in the
case where we do not consider profile information, all labels for a song are averaged, as
described by Equation (1). This results in 15,849 values for both arousal and valence. Let
Yµ

j,i,t be the label rated by participant j for song i at time t and Sj is the list of songs that
have been labelled by participant j. At each time t,

Yi,t =
∑j Yj,i,t1{i∈Sj}

∑j 1{i∈Sj}
(1)

When taking profile information into consideration in a model, we only average
the labels given by users with the same profile feature, per song. For example, when
considering the age of participants, since we binned age into 5 categories, we average
the labels labelled by participants that fall within each of these 5 categories. As shown in
Equation (2), for a single bin of a single profile type, let P represent a profile type (e.g., age,
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genre), while Pr represents all participants that belong to a particular bin of the profile type
(e.g., female). Then, Yi,t,Pr would be the averaged label at time step t for song i by each
participant j that belongs to Pr.

Yi,t,Pr =
∑j∈Pr Yj,i,t1{i∈Sj}

∑j∈Pr 1{i∈Sj}
(2)

5.2. Baseline Emotion Prediction Models

As previously mentioned, two types of models were trained using the newly proposed
dataset, a fully connected model and an LSTM model. The purpose of this is to provide a
simple benchmark for future research as well as provide source code for the data pipeline
so that others can easily use the provided dataset. The two proposed models were each
trained on two variations of our dataset: one using audio features alone (averaged per song),
and one using audio features concatenated with a single profile type feature (averaged
per song and per profile type). This is done separately for arousal and valence. The
input to both types of models is 30 timesteps long and contains 15 consecutive seconds of
music. As depicted in Figure 5, for models trained using audio features only, the input is
straightforward, a vector of shape 260× 30. For models trained using both audio features
and profile features, we append the profile type feature to each feature vector in each time
step, resulting in an input of shape 261× 30. Figure 6 shows the two architectures used.

Figure 5. Overview of the two proposed models and their input/output.

Figure 6. Baseline architectures. Left: Fully Connected architecture. Right: LSTM architecture.
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All models were trained using 5-fold cross-validation, where each fold was trained
for a fixed number of 100 epochs. Mean squared error (MSE) was used as the objective
function, and the Adam optimizer [81] was used with a learning rate of 0.0001. As there
are a total of 54 songs, 10-11 songs were withheld as the test set for each fold, while the
remaining 44-43 songs were used as the training set. In this way, songs in each training and
test set are independent of one another. A batch size of 8 was used.

5.2.1. Fully Connected Model

A dense neural network, i.e., a fully connected model, was implemented as a simple
baseline model to show the performance of valence and arousal prediction. This seemingly
simple architecture has previously managed to outperform other memory-based models
on the task of emotion recognition [82]. We want to provide a very simple benchmark here,
as a starting point for other researchers.

Details of the fully connected model architecture are shown on the left of Figure 6. The
neural network consists of 3 fully connected layers (512-256-1 nodes) with a dropout of 50%
and with leakyReLu of 0.1 as activation function in between consecutive fully connected
layers. The first fully connected layer expands the input dimension from 260 to 512, before
reducing it by half to 256, then finally to 1. A tanh activation function is then applied to
the output, which results in the predicted valence or arousal value. We opted to use the
tanh activation function as the valence and arousal values are in the range −1 to 1. To
reduce the noisiness of the predictions, a Gaussian kernel with sigma set to 1.5 and size
7 was applied as a smoothing function. The architecture of this fully connected model
was inspired by Thao et al. [82], but the hyperparameters were tuned to our dataset using
trial-and-error. The source code of the model’s implementation in PyTorch is provided
online (https://github.com/dorienh/MERP (accessed on 29 December 2022)).

5.2.2. LSTM Model

Recurrent neural network architectures (RNNs) are typically a popular choice when
it comes to sequential input data such as music, video, and speech. LSTMs are a type of
Recurrent Neural Network (RNN) that were designed to overcome the vanishing gradient
issue. The LSTM cells consist of an input gate, an output gate and a forget gate [83]. This
enables the network to keep a memory of previous time steps which is carried forward
when looking at subsequent time steps. The forget gate learns to discard unnecessary data.
Recurrent neural networks, or more specifically LSTM architectures have successfully been
applied to the task of emotion prediction from music [73,83–85].

Our baseline model was inspired by the work of [82], enhanced with the idea of
bidirectional LSTM layers (bi-LSTM) by [73]. These special layers basically consist of two
LSTMs: one that takes input in a forward direction, and one that does so in a backwards
direction. On the right side of Figure 6, we see that the first layer has a hidden dimension of
512, doubling the output to accommodate both forward and backward directions. A fully
connected layer is then used to reduce the hidden dimension of size 2048 to 1, after which
a tanh activation function is applied. The resulting output represents either a predicted
valence or arousal value, depending on the type of model trained. The architecture of this
bi-LSTM model was inspired by Thao et al. [82] and Jia [73], but the hyperparameters were
tuned to our dataset using trial-and-error. The source code of the model’s implementation
in PyTorch is provided online (https://github.com/dorienh/MERP (29 December 2022)).

In the results section, we compare the two models to see how the fully connected
model fares in comparison to the LSTM model.

6. Prediction Results
6.1. Emotion Prediction Models Using Audio Only

The VA (valence and arousal) prediction results for the fully connected model are
shown in Table 5. We show both the MSE and the Pearson correlation coefficient (R)

https://github.com/dorienh/MERP
https://github.com/dorienh/MERP
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between the predicted and ground truth VA values as evaluation metrics using 5-fold
cross-validation.

Table 5. Model performance when using only audio features as input. Best values in bold.

Valence Arousal
MSE R MSE R

Fully connected 0.0315 0.1314 0.0333 0.3507
LSTM 0.0532 0.0599 0.0441 0.2992

From the table, we can see that the fully connected model outperforms the LSTM
model in terms of MSE. The MSE values for both valence and arousal are smaller for the
fully connected model, while the R-values are larger. A larger R-value indicates that the
prediction approximates the ground truth better. Since we are using a very strong feature
representation (OpenSmile), it may suffice to use a simple model to make predictions.
This is in line with the conclusions of Thao et al. [82], whose fully connected models also
outperformed the LSTM model for emotion prediction. They speculate that the 400ms input
windows already contain enough temporal information to make an informed prediction of
emotion. In our case, since we are using a 500ms window, this may provide an explanation
for the better performance of the simpler model without memory. Another possible reason
why the LSTM model did not perform as well as the fully connected model could be due
to the much larger number of parameters being trained in the LSTM model as compared
to the fully connected model. This makes it harder to train without a large dataset, and
more prone to overfitting. For the purpose of this study, we do not aim to find the best
state-of-the-art performance, but merely offer a dataset with a model pipeline that is made
available online (https://github.com/dorienh/MERP (29 December 2022)), and that can
be used as a benchmark for future research. It is worth noting, however, that the arousal
prediction model performs better. This is in line with many other studies [82], and most
likely due to the fact that arousal is an easier-to-understand attribute, reflective of the
energy of the music.

Given that this is a new dataset, we offer a new benchmark, and cannot directly
compare with existing work. Looking at related papers, however, we notice that our results
are in the same ballpark range as them. For instance, Aljanaki et al. [3] provide an overview
of the best performing models (from 21 teams) on the ‘emotion in music’ challenge using
the DEAM dataset at the MediaEval Multimedia Evaluation Campaign. The performance of
the best models in terms of RMSE is 0.08 (both for valence and arousal) [3]. The genre-aware
linear model by Griffiths et al. [86] achieves an RMSE of 0.447 and 0.440 for valence and
arousal, respectively. This confirms that the benchmark models proposed on our dataset
can compete with state-of-the-art models.

6.2. Emotion Prediction Models that Use Audio as Well as Profile Info

In Table 6, the MSE and R-values for both types of models are shown for Valence and
Arousal. Each row represents the results for the models trained with audio information and
one additional profile feature as input. We should note that, as stated above, the datasets
use averaged ratings per participant per profile feature, which results in differences in the
dataset size depending on the number of feature bins. The last row of Table 6 corresponds
to Table 5 and was included for convenience.

A graphical representation of Table 6 is depicted in Figure 7. The top two graphs
show the MSE results, and we can observe that for valence, the fully connected model
outperforms the LSTM model in all cases. For arousal, LSTM performed slightly better for
models that included the age, genre, instrument, training, duration and master profile fea-
ture. Similarly, for the Pearson correlation (R) results, the fully connected model for valence
outperforms the LSTM model in almost every case, except for the model that included the
language profile feature. When predicting arousal, the LSTM model performs better for
most models with profile features except those that included gender and residence.

https://github.com/dorienh/MERP
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Table 6. Model performance when using both audio features as well as one profile feature as input.
The best performing model is indicated in bold.

Fully Connected LSTM

Profile Feature Valence Arousal Valence Arousal
MSE R MSE R MSE R MSE R

age 0.0756 0.0549 0.0722 0.2194 0.1174 -0.0048 0.0595 0.2397
gender 0.0644 0.0679 0.0517 0.2813 0.0802 -0.0017 0.0649 0.2576
residence 0.0750 0.0500 0.0860 0.2011 0.1048 0.0316 0.1240 0.1881
enculturation 0.0634 0.0441 0.0703 0.1837 0.0834 0.0355 0.0970 0.2133
language 0.0502 0.0104 0.0559 0.1812 0.0626 0.0189 0.0576 0.1919
genre 0.0525 0.0534 0.0507 0.1978 0.0609 -0.0160 0.0462 0.2530
instrument 0.0411 0.0903 0.0448 0.2383 0.0432 0.0142 0.0394 0.2509
training 0.0466 0.0987 0.0462 0.2663 0.0506 0.0214 0.0386 0.2793
duration 0.0657 0.0817 0.0627 0.2195 0.0853 0.0427 0.0580 0.2698
master 0.0441 0.0821 0.0462 0.296 0.0519 0.0122 0.0366 0.3110

audio only 0.0315 0.1314 0.0333 0.3507 0.0532 0.0599 0.0441 0.2992

Figure 7. Comparison of evaluation metrics between the models trained using different profile
features. Note that the range of the y-axes of the graphs has been adjusted for viewing convenience.

We should note that it is not fair to directly compare the results of these different
models with each other, as the test set is different for each of these models. For instance, in
the case of the ‘instrument’ model, the model is not only trying to predict one valence and
arousal value for each time step of the song, but one for participants who do not play an
instrument, and one for those who play at least one instrument. This leads to less noisy
labels overall, and a more directed prediction. Some profile features, like the duration
of musical training, have bins with very few participants inside. In the case of musical
training, there are three bins in total, with the > 5 years bin containing only 0.9% of the



Sensors 2023, 23, 382 19 of 23

data. Yet, due to the fact that the data is averaged per song per profile bin, this accounts for
a third of the final model evaluation. So while some of the results with profile information
may seem lower than the audio-only model, the predictions within certain bins will be
stronger. We offer these results as a benchmark for future research, not so much to compare
to the non-profile methods.

As seen in Section 4, there are significant differences in ratings between different
groups. Based on the statistical analysis of the various profile groups in that section,
the profile features related to musical background are related to VA ratings. We see that
models that include those seem to have a higher predictive power, which is indicative of a
better-separated feature space.

Table 6 offers benchmark prediction results for each of the models with different
profile features as input. In future work, it would be interesting to explore the class-specific
accuracy of each profile feature bin. Given the fact that we did always have a large set
of ratings for each of the dedicated combinations of profile bins (e.g., Indian, with other
language, more than 5 years of training, and other gender), we did not include a model
that takes all profile features as input.

7. Conclusions

In this work, we present a new dataset of music with emotion ratings, called MERP,
which includes continuous valence and arousal ratings for full-length audio, as well as
profile information of the raters. On average, each song was rated by approximately 47
participants. We perform thorough data preprocessing on the dataset to clean it, including
a novel approach for quality control based on benchmark ratings from the DEAM dataset.
The resulting dataset is available online.

Through a detailed descriptive data analysis in Section 4, we uncovered which profile
information has an influence on valence and arousal ratings. For instance, participants
whose favourite genre is classical music, rate valence significantly different than partici-
pants with other favourite genres. For participants who reside in different countries (US
versus India), we notice a significant difference in both arousal and valence ratings. This is
in line with findings by Gómez Cañón et al. [87], who state that profile information has the
potential to improve group-based MER. We also found more differences between profile
groups when taking into account culture-related profile types as well as music-related
profile features.

We provide two baseline predictive emotion models for our new dataset based on
a fully connected, as well as a long short-term memory neural network architecture. In
an experiment, we examine the power of adding a profile feature as input to the model
so as to get more customized ratings. Our proposed MERP dataset (https://www.kaggle.
com/kohenyan/music-emotion-recognition-with-profile-information (29 December 2022))
as well as all of our baseline models (https://github.com/dorienh/MERP (29 December
2022)) are available online. We show that by providing not just denoised emotion ratings
for full-length musical pieces, but also a set of profile features for each rater, we can use
these data to train models that predict how specific groups of people perceive emotion.
This will help address the noisiness that is inherent in the field of emotion ratings.

In future work, MERP can easily be expanded. The listening study can be opened
again on MTurk, to the same regions for more data, or to more countries other than India
and the US. More royalty-free music can be added as well. As long as the 4 DEAM songs are
included in the study, they can continue to be used as a benchmark for identifying anomalies.
We provide the code for the listening study (https://github.com/dorienh/MERP/blob/
master/amazon_Merged.html) used on Amazon Turk as reference. Further, researchers
have long investigated how particular music features convey emotional information. In
a recent review, Panda et al. [12] survey emotion models using eight musical features—
melody, harmony, rhythm, dynamics, tone colour, expressivity, texture and form—and
discuss which aspects of these features may influence emotions. The dataset provided in
this research provides an avenue for researchers to further examine musical features and

https://www.kaggle.com/kohenyan/music-emotion-recognition-with-profile-information
https://www.kaggle.com/kohenyan/music-emotion-recognition-with-profile-information
https://github.com/dorienh/MERP
https://github.com/dorienh/MERP/blob/master/amazon_Merged.html
https://github.com/dorienh/MERP/blob/master/amazon_Merged.html
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their effect on the emotion states of listeners with different backgrounds. As the audio is
royalty-free and available for download, future studies need not use the same openSMILE
audio features used in this work, but can freely generate other features as well. The labels
provided are dynamic and span full-length songs, and can be aggregated or split as desired.
The labels are also 2-dimensional and can be mapped to categories according to hybrid
emotional models such as [29].

In future research, it would be useful to further improve the baseline models with
state-of-the-art machine learning techniques, and build a model that takes into account
all features. It would also be useful to explore how emotion ratings typically evolve over
the course of long music pieces. In order to account for subjectivity, not only for each
song but also for each participant profile group, we prioritised collecting more labels for
a small number of songs rather than fewer labels for many songs, while we have already
collected numerous ratings for 50 full-length songs, in future research this could be further
expanded. Having a larger variety of songs from more genres and styles would benefit the
generalisation of predictive models.
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