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Abstract—Information on liquid jet stream flow is crucial in
many real world applications. In a large number of cases, these
flows fall directly onto free surfaces (e.g. pools), creating a splash
with accompanying splashing sounds. The sound produced is
supplied by energy interactions between the liquid jet stream and
the passive free surface. In this investigation, we collect the sound
of a water jet of varying flowrate falling into a pool of water,
and use this sound to predict the flowrate and flowrate trajectory
involved. Two approaches are employed: one uses machine-
learning models trained using audio features extracted from the
collected sound to predict the flowrate (and subsequently the
flowrate trajectory). In contrast, the second method directly uses
acoustic parameters related to the spectral energy of the liquid-
liquid interaction to estimate the flowrate trajectory. The actual
flowrate, however, is determined directly using a gravimetric
method: tracking the change in mass of the pooling liquid over
time. We show here that the two methods agree well with the
actual flowrate and offer comparable performance in accurately
predicting the flowrate trajectory, and accordingly offer insights
for potential real-life applications using sound.

Keywords— Flowrate Trajectory, Flowrate, Laminar Stream,
Audio Features, Machine Learning

I. INTRODUCTION

The flow of falling liquids is found in many real-world
applications (e.g. waterfalls, flushing of toilets, rain, weirs,
fountains, pump exhausts, etc.). Information on the manner of
its flow, flowrate and its dynamics offers crucial insights into
these phenomena and the systems accompanying them. In a
large number of cases, liquid streams may fall directly onto
free surfaces (i.e., pools) and against solid walls, resulting in
splashing sounds associated with the stream interacting with
the passive free surface, via energy and fluid dynamic inter-
actions (e.g. momentum of stream/droplets, surface tension,
viscosity etc).

While detailed analyses of the dynamic regimes of such
liquid-liquid interactions are complicated, it has been widely
observed that the sound produced by these interactions can
reveal key aspects of the flow interactions and other associated
physical properties of the flow system. This insight makes
sense, as different combinations of fluid dynamics result in
distinct gas-liquid interactions that create distinct acoustic
responses which can serve as acoustic signatures [1].

In [2], the flow regime type of a gas-liquid mixture flowing
through a pipe is determined by estimating the acoustic
spectrum of the flow mixture passing through the conduit and

comparing it against the acoustic fingerprints associated with
various flow regimes. Similarly, in [3], the characteristics of
sluggish flow (frequency of slugging, velocity and length of
slugs) in a multiphase flow pipeline is determined from the
acoustic emission in the ultrasonic frequency range. In [4], the
continuous steam quality is determined from the acoustics of
the steam output through an orifice (sonic vibrations created
by the steam flow). A signal proportional to the quality of
the steam is created from the acoustic interaction by filtering
the sonic vibrations for a particular narrowband frequency. In
[5], acoustic techniques are used to analyse noise generated
by fluid flow within a pipe. This is then used to measure the
internal diameter of the pipe. In [6], physical properties of fluid
flow within a pipe such as various mass flowrates, the void-to-
liquid fraction, fluid density, and velocity are determined by
measuring the characteristic acoustic frequency of the pipe and
its amplitude variation associated with differential pressure.
In the field of healthcare, there are studies that determine
the urinary flowrate trajectory by analyzing characteristic
sounds (spectral data) using regression methods, which are
then applied in monitoring contexts to indicate different flow
patterns [7, 8, 9, 10].

In this report, the sound of varying water streams falling
onto a pool of water is used to predict the flowrate and
flowrate trajectory of the streams. Two different approaches
are developed and investigated here: the first method uses
machine-learning (ML) models that are trained using audio
features extracted from the collected sound to predict the
flowrate and the flowrate trajectory. The second method does
not involve any machine learning part, but instead directly
uses acoustic parameters related to the spectral energy of the
liquid interaction to estimate the flowrate trajectory (cf. Fig. 5)
in question. Consequently, the efficacy of both these methods
are compared and their pros and cons discussed.

The remainder of this paper is organized as follows: Section
II (Methodology) offers a brief overview of the used hardware
and data collection protocol, flowrate trajectory extraction
procedures, and an overview of various distance measures
used for measuring the efficacy of the investigated procedures.
Details of experimental results are presented in Section III.
Finally, conclusions from this investigation is presented at
Section IV.
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Fig. 1. Flowrate trajectory prediction using machine learning method.

II. METHODOLOGY

A. Flowrate Data Collection

Using the microphone on a smartphone (iPhone 5) located
1 m away, in an acoustically untreated room, we collected
audio recordings (sampling rate of 44.1 kHz) of water stream
having varying flowrate, together with its flowrate measured
using a gravimetric flowmeter (LABORIE, Mississauga, ON,
Canada). A varying water jet stream coming out of a narrow
tube was directed into the flowmeter. The flowmeter consists
of a collecting funnel and a beaker placed underneath, on a
digital weighing scale connected to a computer. This scale
thus reads the change in the beaker’s weight over time (every
0.1s) as the liquid stream collects into it, thereby indicating
flowrate (resolution of 1ml/0.1s). Acoustically, we treat the
entire interaction between the water jet and the flowmeter as
one system (“blackbox”). A total of 51 flow episodes (i.e.,
51 flowrate readings) along with their audio recordings were
collected. It has to be noted that the collecting beaker is rather
wide and deep (volume of almost a thousand of millilitres of
air), and the flowrate of water stream entering the container
is relatively small (several millilitres of water per second),
consequently, for the flow period observed (several seconds),
the Helmholtz volume is effectively constant (the change in
water level is negligible); any Helmholtz resonance associated
with the air in the container is effectively unvarying and
so does not give rise to any spurious acoustic artefacts or
statistical generalizations, associated with our data collection.

B. Flowrate Trajectory Extraction

1) Machine Learning Method:
Each audio recording, paired with the corresponding

flowmeter reading, were used to train the machine-learning
algorithm (Flowrate is determined from the change of liquid
volume collected over time). The methodology used in this
investigation is shown in Fig. 1.

To synchronize with the collected flowrate measurements,
audio recordings were similarly divided into 0.1 second
frames. From every frame, 14 Mel-frequency Cepstral Coeffi-
cients (MFCCs) were extracted. MFCCs were chosen because
of their ubiquity in the audio recognition arena [11, 12, 13, 14,
15]. Two supervised machine learning algorithms: k-nearest
neighbours (KNN) [16] and gradient boosting [17], were
trained using the extracted MFCCs and their corresponding
flowmeter labels. The number of nearest neighbours was set to

Fig. 2. Flowrate trajectory estimation using acoustic parameter method.

200 and all of the points in each neighbourhood were weighted
equally. Minkowski distance was chosen as the distance metric
(with a power parameter equal 2). For the gradient boosting,
100 boosting stages were used with a learning rate of 0.1. The
quality of a tree split was based on mean squared error.

From the dataset collected, 70% of the recordings were
used for training the ML algorithm, i.e., 35 recordings which
resulted in a total of more than 10000 audio frames of 0.1
second. The remaining 30% was used for testing, i.e., 16
recordings (4,500 audio frames) [18]. To test the algorithm,
the MFCCs extracted from every audio frame of the testing
set were passed into the pre-trained classifiers to predict the
corresponding volume. Final volume was estimated by soft-
voting the predictions from the two classifiers (soft voting
returns the predicted label as argmax of the average of
predicted probabilities from two classifiers). Resulting flowrate
trajectories were derived from this estimated volume. In order
to aid comparison with acoustic parameter method (described
below), the resulting flowrate trajectory was normalized with
a min-max normalization with minimum zero and maximum
one.

2) Acoustic Parameter Method:
The dynamic interaction of a liquid stream entering a free

surface is complex (quasi-chaotic) in nature, coupled with the
fact that under certain flow regimes, the stream may in fact
break up mid-stream to coalesce as a sequence of droplets; the
consequent impulsive interactions with the free surface results
in complicated gas-liquid surface interactions (“splashing”
and “bubbling”) and even secondary splashes. Nevertheless,
this spectrum of complex interactions consistently produce
sustained broadband sounds with distinct acoustic parameters
which are directly related with the energy of the interaction
(cf. conservation of momentum) and may be meaningfully
exploited to reveal and estimate the flowrate trajectory. The
corresponding methodology is shown in Fig. 2.

The raw audio recordings were found to contain artifacts
introduced by the environment (e.g. air conditioning noise) and
required pre-processing to account for this. Further, inspection
of the spectrogram (visually) showed energy concentrated in
two distinct frequency regions which may be meaningfully
related to the flowrate: a low frequency region (< 1 kHz) and
a high frequency region (> 1 kHz). When the audio samples
were listened, the low frequency region seemed to associate
with direct impact of the stream while the high frequency
region seemed to associate with secondary splashes.

For pre-processing the audio recordings, harmonic regener-
ation noise reduction (HRNR) technique was used to account
for the artifacts introduced by the room and the background
noise [19]. This technique produces good results in removing
noise. As a result it was found to improve the perceptual
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Fig. 3. Spectrogram of an audio recording before and after pre-processing.

quality of the audio recording (Fig. 3 shows spectrogram of an
audio recording before and after pre-processing using HRNR
technique.).

After pre-processing, the energy associated with the audio
sample was extracted for each audio frames. These values were
smoothed to obtain (naı̈vely) the flowrate trajectory (flowrate
trajectory was again min-max normalized).

Further, we extracted energy from the two frequency regions
identified earlier to see if the predicted flowrate trajectory
could be further improved. We tried four different approaches.
In first, we limited our analysis only to the low frequency part.
In the second, only the high frequency region was analysed.
Thirdly, we boosted the low frequency regions with a gain
of 12 dB and examined the resulting flowrate trajectory. A
similar investigation was done for the high frequency region
in the fourth approach (No filtering was done in third and
fourth approach).

C. Measure of closeness between flowrate trajectories

The closeness between the predicted flowrate trajectories
and the actual flowrate trajectories is reflected by the distance
between them. Two distance measures were used in this
investigation: Euclidean distance and Fréschet distance. The
lower the estimated distance the closer the predicted trajectory
to the actual.

1) Euclidean Distance: The straight-line distance between
two points is given by the Euclidean Distance [20]. We
represent the predicted flowrate corresponding to n points in
a predicted flowrate trajectory (P) as (p1, p2, ..., pn), and the
actual flowrate corresponding to n points in actual flowrate
trajectory (A) by (a1, a2, ..., an). The Euclidean distance be-
tween these two flowrate trajectories E(P,A) is then given
as

E(P,A) =

√√√√ n∑
i=1

(pi − ai)2 (1)

2) Fréschet Distance: Fréschet distance estimates the sim-
ilarity between curves by taking into account the location
and ordering of the points along the curves [21]. In this
investigation, a discrete variation of Fréschet distance, namely
coupling distance δdf (i.e., looking at all the possible coupling
between points from the curves), is used. The discrete Fréschet

Fig. 4. An example confusion matrix showing accuracy of softvoting classifier
for a particular recording (corresponding to that of recording “A”). The
numbers shown in each of the squares is the number of audio frames classified
accordingly.

distance δdf (P,A) between the predicted flowrate trajectory
(P) and the actual flowrate trajectory (A) is given as

δdf (P,A) = min||L|| (2)

where L is the coupling between P and A and ||L|| is the
longest link in L. For a detailed description of Fréschet
distance, see [21].

III. EXPERIMENTAL RESULTS

1) Flowrate Trajectory Prediction: MFCCs extracted from
every audio frame of the testing recordings were used to
predict the corresponding volume using each of the trained
classifiers. The resulting flow volume corresponding to the
audio frame in question is estimated by soft-voting the pre-
dictions from the two classifiers mentioned earlier. As an
example Fig. 4 presents the resulting confusion matrix and
shows the predicted and actual volume values associated with
audio frames corresponding to a typical recording (that of
flow recording “A”). Confusion matrices are used to assess the
performance of classifiers; for a good classifier, the resulting
confusion matrix will look dominantly diagonal (i.e., showing
high number of correct classification); all the off-diagonal
elements represent the misclassified data. As seen in Fig. 4,
our ML algorithm successfully predicts when the flow volume
associated with an audio frame is 0.0 ml and 2.0 ml. However,
when the actual volume is 1.0 ml, our algorithm tends to
overestimate. Consequently for this example (see inset of
Fig. 5), our algorithm slightly overestimate the flowrate.

Fig. 5 shows the resulting flowrate trajectory predicted
(Normalized flowrate trajectory shown in main part of Fig. 5
and the inset shows the non-normalized result). Also shown in
Fig. 5 are the flowrate trajectories estimated for the particular
flow episode using the acoustic parameter method. It is im-
portant to note that the acoustic parameter method is unable
to predict volume corresponding to an audio frame, therefore
a confusion matrix cannot be created for this method.
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Fig. 5. Flowrate trajectories (corresponding to that of recording “A”) resulting
from the ML method and acoustic parameter method. To facilitate meaningful
comparison, the main figure shows the normalized result; the inset shows the
non-normalized result produced using ML method compared with the actual
flowrate.

At the onset region of the Fig. 5 (specifically from 0 to 5 s),
the flowrate trajectories estimated using the acoustics param-
eter method were found to overestimate the flowrate. Among
the two distinct frequency regions analyzed, flowrate trajec-
tories resulting from the low frequency region underestimates
the flowrate (see the solid red curve) whereas the trajectory
resulting from the high frequency band tends to overestimate
the flowrate (see the solid blue curve). The low frequency
boosting slightly improved the result while the high frequency
boosting did not have much effect on the resulting trajectory.
The closeness of the predicted trajectories to the original
trajectories is compared by calculating the Euclidean distance
and Fréschet distance between them. The corresponding results
are shown in Fig. 6 and Fig. 7, respectively. Distances between
the trajectories was determined for all 16 recordings in the
testing set (represented as A, B, ..., P in Fig. 6 and Fig. 7).
The flowrate trajectory shown in Fig. 5 is that of recording A.

Fig. 6. Euclidean Distance between flowrate trajectories from prediction and
actual.

When looking at the straight line distance between the
points in flowrate trajectories of the actual and predicted cases,
the performance of our proposed ML method and the acoustic
parameter approach is comparable. The ML prediction has a
slight edge over the acoustic parameter approach for cases
such as A, F and M, which is reflected as the lowest Euclidean
distance for these trajectories as shown in Fig. 6. Among our
various acoustic parameter approaches, the trajectories pre-

Fig. 7. Fréschet Distance between flowrate trajectories from prediction and
actual

dicted using the low frequency band of spectrum were found
to underestimate the relative flowrate, and results in the worst
trajectory reconstruction (i.e., comparatively high Euclidean
distance). Boosting the low frequency power minimizes this
trend somewhat but not by too much, whereas, trajectory
reconstruction using the high frequency band of the spectrum
is comparable to that of ML.

If the similarity between trajectories is estimated by cal-
culating the Fréschet distance (i.e., accounting for location
and ordering of the points in the trajectories), there is no
clear distinction between the performance of the ML and
acoustic parameter method (See Fig. 7). Whether this result
is an artifact introduced by the normalization applied requires
further investigation.

2) Flow Volume Prediction: The ML method for flowrate
prediction has inherent overheads such as the requirement
of having a large number of training samples, and requires
lengthy computing time to extract audio features and to train
the model compared to acoustic parameter method, the latter
yields only relative flowrate. However, our ML method offers
a way to directly predict the absolute flowrate for every audio
frame. Using this absolute flowrate information, not only can
we predict the flowrate trajectory, then also thus determine
the absolute volume associated with every recording. The
predicted flow volume is found to have high correlation to
the actual volume (Pearson correlation coefficient of 0.83).
This result is shown in Fig. 8. Consequently, the best-fit line
(Fig. 8) may be further be exploited for calibration of such an
approach yielding even more accurate flowrate trajectories.

IV. CONCLUSIONS

We have shown that sound of a water stream with varying
flowrate hitting a pool of water can be successfully used to
predict the flowrate across time and hence reconstruct the
flowrate trajectory of the varying flow. This is the first study
to simultaneously test two approaches against the same real-
world measurement. Of the two approaches investigated, the
ML method offers good agreement and can robustly predict ab-
solute flowrate, however, with a slight computational overhead.
The acoustic parameter method is quick and computationally
straight forward; it yields only the relative flowrate but nev-
ertheless still offers good estimation of flowrate trajectories.

Preprint accepted for publication in the Proceedings of the IEEE International Conference on Signal Processing and
Communications (SPCOM), 2020.



Fig. 8. Flow volume prediction using machine learning. The best fit line
for the predicted volume is shown as a solid black line (pearson correlation
coefficient 0.83) while the line corresponding to a perfect prediction is the
dashed grey line (predicted volume = actual volume; (pearson correlation
coefficient 1.0).

Collecting sound related to varying flow hitting surfaces offers
a viable option to determine flowrate and flowrate trajectory.
This provides an indirect and non-invasive method to observe
liquid-liquid interactions which in turn can reveal key aspects
of the flow interactions and other associated physical proper-
ties of the flow system.
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