
Composing Fifth Species Counterpoint Music With A

Variable Neighborhood Search Algorithm

D. Herremansa,∗, K. Sörensena
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Abstract

In this paper, a variable neighborhood search (VNS) algorithm is devel-
oped and analyzed that can generate fifth species counterpoint fragments.
The existing species counterpoint rules are quantified and form the basis of
the objective function used by the algorithm. The VNS developed in this
research is a local search metaheuristic that starts from a randomly gener-
ated fragment and gradually improves this solution by changing one or two
notes at a time. An in-depth statistical analysis reveals the significance as
well as the optimal settings of the parameters of the VNS. The algorithm has
been implemented in a user-friendly software environment called Optimuse.
Optimuse allows a user to input basic characteristics such as length, key and
mode. Based on this input, a fifth species counterpoint fragment is generated
by the system that can be edited and played back immediately.

Keywords: Metaheuristics, Computer Aided Composing, Variable
Neighborhood Search, Combinatorial Optimization
2000 MSC: 68T20,
2000 MSC: 90C27,
2000 MSC: 90C59

1. Introduction

One of the earliest attempts at automated musical composition is due to
Mozart. His Musicalisches Würfelspiel (Musical Dice Game) uses chance to
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Preprint submitted to Expert Systems with Applications, 40.16 (2013): 6427-6437. (accepted) June 27, 2016



piece together musical fragments into a Minuet (Boenn et al., 2009). Similar
experiments that use stochastics during the compositional process can be
found in the work of avant-garde composers such as John Cage, Charles
Dodge, Lejaren Hiller and Iannis Xenakis (Brown and Jenkins, 2004). In
the case of these composers the emphasis is not on creating a system that
generates a different output on each run, but on using techniques to create
and improve a single composition.

A famous example is the “Atlas Eclipticalis”, which Cage composed in
1961 by drawing musical staves over a star chart (Burns, 2004). Dodge is
known for pieces such as “Earth’s Magnetic Field” composed by mapping
fluctuations in the magnetic field to musical sounds. Other examples of com-
positions based on stochastics are Xenakis’s “Pithroprakta” and “Metasta-
seis”. These pieces are inspired by natural phenomena such as the flights of
starlings and a swarm of bees (Fayers, 2011).

From the very conception of computers, the idea was formed that they
could be used as a tool for composers. Around 1840, Ada Lovelace, the
world’s first conceptual programmer (Gürer, 2002) hinted at using computers
for automated composition:

“[The Engine’s] operating mechanism might act upon other things besides
numbers [. . . ] Supposing, for instance, that the fundamental relations of
pitched sounds in the signs of harmony and of musical composition were
susceptible of such expressions and adaptations, the engine might compose
elaborate and scientific pieces of music of any degree of complexity or extent.”
– (Bowles, 1970)

Starting in the mid 1900s, many systems have been developed for au-
tomated composition. One of the earliest pieces successfully composed by
a computer is the “Illiac Suite” by Lejaren Hiller and Leonard Isaacson in
1957, who simulate the compositional process with a rule-based approach
(Sandred et al., 2009).

An automatic composition system typically wants to find a musical frag-
ment that follows the rules of a chosen musical style as well as possible. By
quantifying these rules, the “quality” of different fragments can be compared.
A fragment that conforms to the style, will have a high solution quality. In
this sense, composing music can be considered to be a combinatorial op-
timization problem. This musical composition problem is computationally
complex, because the length of the piece exponentially increases the num-
ber of possible fragments. If an exact method like exhaustive enumeration is
used to find the best possible fragment, the exponential number of solutions
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would make this practically impossible. For instance, a musical fragment
consisting of 16 notes, without rhythm, in which each note can take on 14
different pitches, already has 1416 (or roughly 2.18 quintillion) possible note
combinations. Heuristics, or rules of thumb, offer an alternative to exact
methods. These simple strategies will generally find a reasonable solution
in a very short computing time. Metaheuristic optimization algorithms offer
a balance between the solution quality of exact methods, and the speed of
heuristic methods. They therefore present a promising approach to generate
good quality musical fragments within reasonable computing time.

Metaheuristics can roughly be classified in three categories. A first cat-
egory is that of the population-based metaheuristics, which includes genetic
and evolutionary algorithms, path relinking and others. These algorithms
keep a set of solutions, usually referred to as population, and combine mem-
bers of this set to form new ones (Sörensen and Glover, 2012).

In 1991, the first genetic algorithm (GA) was applied in the field of mu-
sic (Horner and Goldberg, 1991). In the following decades, a number of
GAs were developed for computer aided composition (CAC), an extensive
overview is given by Burton and Vladimirova (1999) and Todd and Werner
(1998).

A second category of metaheuristics is that of the constructive meta-
heuristics, such as ant colony optimization and GRASP. Constructive meta-
heuristics construct solutions from their constituting parts (Sörensen and
Glover, 2012). This category has not received as much attention as the
population-based metaheuristics, especially in the domain of CAC. The first
ant colony metaheuristic for harmonizing a melody was developed by Geis
and Middendorf (2007). This algorithm includes an objective function that
indicates how well a fragment adheres to rules of baroque music.

Local search algorithms are the last category of metaheuristics, they
include techniques such as tabu search and variable neighborhood search
(VNS). These algorithms iteratively make small changes to a single solution
(Sörensen and Glover, 2012). Local search techniques have been used at IR-
CAM (Institut de Recherche et Coordination Acoustique/Musique) for solv-
ing musical constraint satisfaction problems (Truchet and Codognet, 2004).
The potential of local search metaheuristics in the area of CAC remains an
interesting area for exploration.

Although there is some existing research on the use of genetic algorithms
to compose counterpoint, the application of the variable neighborhood search
metaheuristic to generate counterpoint is new. In this paper, the first suc-
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cessful implementation of a VNS to generate first species counterpoint by the
authors (Herremans and Sörensen, 2012) is expanded to fifth species counter-
point music. This algorithm was implemented as a tool called Optimuse. In
this research, the existing work is expanded to generate more complex fifth
species counterpoint.

The next section gives an overview of existing research and explains the
difference between first and fifth species counterpoint. Contrary to most
of the existing studies, a detailed breakdown of the objective function is
given and Fux’s rules are included as extensively as possible. In section 3
the developed objective function that assesses how well music fits into the
counterpoint style is explained. This is followed by a detailed description of
the algorithm in the fourth section. Details on how Optimuse was imple-
mented are discussed in “Architecture and Implementation”. In the section
called “Experiments”, a statistical experiment is described that determines
the optimal parameter settings of the VNS, this is followed by some general
conclusions.

2. Counterpoint and CAC

An important difference between the existing CAC algorithms is the way
in which they evaluate music. GenJam, the genetic jammer, is an example of
a population-based metaheuristic (Biles, 2001). It uses a genetic algorithm to
compose monophonic jazz fragments given a fixed chord progression. Unlike
traditional genetic algorithms, the solution quality or fitness is not coded in
the algorithm, but feedback is given for each population member individually
by a human mentor (Biles, 2003). This creates an enormous fitness bottle-
neck. A similar problem arises in the CONGA system, which uses a genetic
algorithm to generate rhythmic patterns. Another interactive rhythmic pat-
tern generator was developed by Horowitz (1994) using a genetic algorithm.
In this case a human has to listen to each member of the population and in-
dicate his or her preference for selection. This process has to be repeated for
each population. The human fitness bottleneck slows down the composing
process significantly and places a non-negligible psychological burden on the
listener (Tokui and Iba, 2000).

Other CAC research circumvents this human fitness bottleneck by using
an automatically calculated objective function. Towsey et al. (2001) develop a
fitness function based on best practices. Their analysis of a library of existing
melodies, the Western art music repertoire, resulted in 21 features that are
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included in the fitness function. This library contains melodies by composers
such a Bach, Tchaikovsky, Du Fay and Montiverdi as well as traditional
nursery rhymes. The resulting function could be used to construct a genetic
algorithm that generates short melodies in the tradition of Western diatonic
music. Vox Populi, a genetic algorithm that can evolve a population of chords
(Moroni et al., 2000), uses a fitness function based on physical factors. These
factors relate to melody, harmony and vocal range.

In a previous paper (Herremans and Sörensen, 2012) the authors have
implemented a variable neighborhood search algorithm that can generate
cantus firmus and first species counterpoint melodies. The counterpoint style
was chosen because it is one of the most formally defined musical styles,
consisting of a set of simple rules (Rothgeb, 1975). Figure 1 shows an example
of a first species counterpoint fragment. In this figure, the bottom line is the
cantus firmus (CF), or “fixed song”. The top line is the counterpoint (CP),
a melody that is composed by not only taking into account the melodic
relationship between the subsequent notes, but also the harmonic balance
with the cantus firmus. The term “counterpoint” refers to the relationship
between these two melodies (Norden, 1969).
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Figure 1: First species counterpoint fragment (generated by Optimuse)

Since the previously developed algorithm was successful in generating
good cantus firmi and first species counterpoint fragments, Optimuse was
extended to include fifth species, a more complex form of counterpoint music.
In fifth species, a rhythmical aspect is added to the music. An example of
fifth species counterpoint is displayed in Figure 2.

The amount of research done on automatically evaluating a musical frag-
ment, to circumvent the human bottleneck, is very limited. A musical style
is not typically defined in a formal way that can be quantified. However, the
counterpoint style is an exception to this rule. It is a very formalized and
restrictive style with simple rules for melody and harmony (Rothgeb, 1975),
which makes it perfect for quantification.
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Figure 2: Fifth species counterpoint fragment (Salzer and Schachter, 1969)

A number of studies use counterpoint rules to evaluate the generated mu-
sic. Aguilera et al. (2010) developed an algorithm that uses probabilistic
logic to generate first species counterpoint music in C major. Their fitness
function uses only the harmonic characteristics of counterpoint and ignores
the melodic aspects. Polito et al. (1997) implement a genetic algorithm that
can compose fifth species counterpoint, based on an existing cantus firmus.
The GA uses a piece-based adjusted fitness function based on Fux’s home-
work problems, not a fixed set of rules. Composer David Cope’s “Gradus”,
composes first species counterpoint given a cantus firmus. The evaluation is
based on six criteria, a small subset of all counterpoint rules (Cope, 2004).

Other studies have developed methods to compose four-part counterpoint
music. For instance, Schottstaedt (1984) constructed a rule-based expert sys-
tem for composing species counterpoint based on Fux’s rules. The GA devel-
oped by Phon-Amnuaisuk et al. (1999) uses a set of four-part harmonization
rules as a fitness function. Donnelly and Sheppard (2011) presented a similar
GA, based on 10 melodic, 3 harmonic and 2 rhythmic criteria. For a more
extensive overview of existing research, the reader is referred to Herremans
and Sörensen (2012).

This research includes Fux’s rules as extensively as possible. In the next
section, a detailed breakdown of the objective function is given.

3. Quantifying musical quality

Optimuse generates fifth species counterpoint music, a very specific type
of polyphonic classical music. Counterpoint music was the inspiration of
many of the great composers such as Bach and Haydn and are foundational
in music pedagogy, even today (Mateos-Moreno, 2011). The counterpoint
rules are a set of strict and specific rules that take into account the com-
plexities that arise by playing multiple notes at the same time (Siddharthan,
1999). Fux wrote down very specific counterpoint rules in his Gradus Ad
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Parnassum in 1725, a pedagogical book designed to teach musical students
how to compose (Fux and Mann, 1971). It starts by explaining rules for easy
(first species) musical fragments and gradually moves to more complex (fifth
species) music. Each of Fux’s species can be seen as “levels” that add more
complexity to the music, e.g. more rhythmical possibilities (Adiloglu and
Alpaslan, 2007).

Just like a student would start with Fux’s first species, the cantus firmus
and first species rules were implemented in Optimuse as a prototype (Her-
remans and Sörensen, 2012). Each of the rules, as described by Salzer and
Schachter (1969), were quantified into a subscore between 0 and 1. These
subscores include rules such as “each large leap should be followed by step-
wise motion in the opposite direction” and “the climax should be melodically
consonant with the tonic”. This paper brings Optimuse to the next level by
extending these rules with fifth species counterpoint rules. The subscores
now also include rules for more complex musical structures such as passing
notes, ties, ottava and quinta battuta. A passing note is a non-harmonic
note that appears between two stepwise moving notes. An ottava or quinta
battuta (beaten octave or fifth) occurs when two voices move in contrary mo-
tion and leap into a perfect consonance (Salzer and Schachter, 1969). The
rules can be divided into two categories. Melodic rules focus on the hori-
zontal relationship between successive notes, whereas harmonic rules focus
on the vertical interplay between simultaneously sounding notes. A detailed
breakdown of the resulting subscores can be found in the appendix.

Given a cantus firmus and a fifth species counterpoint fragment, the objec-
tive function f(s), displayed in Equation 1, calculates how good the fragment
fits into the counterpoint style.

f(s) =
19∑
i=1

ai.subscoreHi (s)︸ ︷︷ ︸
horizontal aspect

+
19∑
j=1

bj.subscoreVj (s)︸ ︷︷ ︸
vertical aspect

(1)

This score is used as an indicator of quality of the generated music. All
subscores result in a number between 0 (best) and 1 (worst), therefore, the
objective of the algorithm developed in the next section is to minimize f(s).
Each subscore has a weight ai or bj and the total score is a linear combination
of the subscores with their corresponding weights. The weights are set in
the beginning by the user. This allows a particular rule to be emphasized
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according to the preferences of the user.
The rules mentioned above are all “soft” rules. Although the aim of

Optimuse is to find a musical fragment that has the lowest possible value for
the objective function, it is allowed that a few of these rules are “broken”,
meaning that their corresponding subscore is not equal to zero. Given the
large number of rules and their complexity, it not known if it is even possible
to satisfy all of them at the same time for a piece of arbitrary length.

The soft rules are supplemented with a set of “hard” rules, that have
been implemented as constraints. While soft rules can be violated, hard
rules cannot. A violation of one or more of these constraints renders the
musical fragment infeasible. All rhythmic criteria that are defined by Salzer
and Schachter (1969) have been implemented as hard constraints. Table 1
lists the implemented feasibility criteria.

Table 1: Feasibility criteria

No Feasibility criterium

1 All notes come from the correct key.
2 Only certain rhythmic patterns are allowed for a measure.
3 No rhythmic pattern can be repeated immediately or used excessively.
4 The first measure should be a half rest followed by a half note.
5 The penultimate measure is a tied quarter note, followed by two eight

notes and a half note.
6 The last measure should be a whole note.
7 Ties are allowed between measures and notes of the same pitch.
8 A half note can be tied to a half note or a quarter note.

No other ties are possible.
9 Maximum two measures of the same note value (duration) are allowed.

Variations with eight notes do not count.

In the next section, these hard rules are used by the variable neighborhood
search algorithm as feasibility criteria. The objective function, based on the
soft rules, will be minimized by the algorithm.

4. Variable neighborhood search

Most of the existing literature on CAC proposes population-based algo-
rithms (especially genetic/evolutionary algorithms) to compose music. In
this paper, the class of local search metaheuristics is explored and a variable
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neighborhood search algorithm (VNS) is developed. The strength of local
search metaheuristics in solving difficult combinatorial optimization prob-
lems has been demonstrated in many different fields such as vehicle routing
and scheduling (Sörensen and Glover, 2012). The literature suggests that
local search metaheuristics are particularly well-equipped to exploit the spe-
cific structure of the problem. This stands in contrast to the “black-box”
character of many population-based metaheuristic implementations.

The previously developed VNS for CAC by the authors significantly out-
performs a genetic algorithm (Herremans and Sörensen, 2012). A formal
comparison with existing systems based on genetic algorithms was not pos-
sible due to the fact that they all use a different fitness function. Therefore
the authors implemented a genetic algorithm based on the same objective
function as used by the VNS for generating first species counterpoint. This
GA uses binary tournament selection to select two parents from the popu-
lation. Children are created by performing two-point crossover at random
points and a mutation, changing r% of the notes randomly, occurs with a
probability p. Children are reinserted in the population with reversed binary
tournament selection if they do not yet exist in the population in order to
prevent converging of the population. The parameters of the GA were set
with a full factorial experiment similar to the one in section 6. A unilateral
paired t-test based on 100 runs of both algorithms shows that the VNS is
able to find a better solution than the GA (p-values of 0.01593 for the cantus
firmus and 5.363e−15 for the counterpoint) despite its shorter mean running
time (Herremans and Sörensen, 2012).

Given the results of this comparison on first-species counterpoint (a much
simpler optimization problem), there is every reason to expect that a similar
GA to automatically compose fifth-species counterpoint will be outperformed
by our VNS approach. Moreover, whereas the development of genetic opera-
tors (especially crossover) for first-species counterpoint is relatively straight-
forward, this is not at all the case for fifth-species counterpoint, as the pres-
ence of different rhythmic patterns implies that there is no simple note-
to-note correspondence between two fragments of fifth-species counterpoint
music. Developing a powerful GA to compose fifth-species counterpoint is
therefore a complex undertaking that is beyond the scope of this paper.

The core of VNS is a local search strategy, whereby the algorithm starts
from an initial solution s and iteratively makes small improvements (or
moves) to this solution in order to find a better one. The set of all solu-
tions s′ that can be reached from the current solution by making one move
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is called the neighborhood of this solution. When no better solution can be
found in the neighborhood of the current solution, the search has arrived in
a local optimum. A variable neighborhood search strategy then switches to a
different type of neighborhood to be able to continue the search escape these
local optima (Mladenovic and Hansen, 1997). A second mechanism used by
VNS is a perturbation strategy. When no improving solutions can be found
in any of the neighborhoods, a relatively large part of the current solution is
randomly changed, allowing the search to continue (Hansen and Mladenović,
2003).

Since the first implementations of variable neighborhood search in the late
90s, the technique has been successfully applied to a wide range of combina-
torial problems (Hansen and Mladenović, 2001) including finding extremal
graphs (Caporossi and Hansen, 2000), vehicle routing (Bräysy, 2003), project
scheduling (Fleszar and Hindi, 2004) and graph coloring (Avanthay et al.,
2003). Hansen et al. (2001) found that for several problems, the VNS out-
performs existing heuristics in an effective way and is able to find the best
solutions in moderate computing time.

A detailed description of this algorithm is given in the next section.

4.1. Components

The developed VNS starts from an initial random fragment s. Whilst
generating this fragment, the hard rules from the previous section are taken
into consideration to ensure that the fragment is feasible. This means, among
other things, that the rhythmic patterns of the first, penultimate and last
measure are set correctly. For each measure, a pattern is chosen from the
set of allowed patterns and ties are applied correctly. The pattern selection
mechanism ensures that there are no more than two sequential measures with
the basic rhythmic pattern. This basic pattern considers the rhythm without
ties and eight note decorations. Finally, the pitches of all notes are randomly
selected from the correct key. This ensures that the initial fragment s is
feasible and can be used as a starting point for the VNS.

Three types of moves are defined, giving rise to three different neighbor-
hoods. Figure 3 shows an example of a possible move for each of the three
types of moves. The first move is the swap move. The swap neighborhood
consists of all feasible fragments that can be created by swapping the pitch of
any two notes of the current fragment. The change1 move changes the pitch
of any one note by any other allowed pitch from the key. The neighborhood
therefore consists of the fragments that are created by each changing any one
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note to any other allowed pitch. The change2 move expands this by changing
2 sequential notes to any other allowed pitch.

The algorithm starts by generating the swap neighborhood. Once a neigh-
borhood is generated, the algorithm selects the fragment s′ with the best
value for the objective function f(s′) as the new current fragment. This
strategy is called steepest descent and typically ensures a fast improvement
of the solution quality. When no better solution can be found in one of the
neighborhoods, the VNS moves to the next neighborhood.

G ˇ ˇ ˇ ˇ

1

(a) Original

G ˇ ˇ ˇ ˇ

1

(b) Swap move

G
ˇ

ˇ ˇ ˇ

1

(c) Change1 move

G
ˇ ˇ ˇ ˇ

1

(d) Change2 move

Figure 3: The three types of moves

When no improving fragments can be found in any of the neighborhoods,
a local optimum slo is reached (see Figure 4). In order to get out of this
local optimum, a perturbation strategy is used. The algorithm reverts back
to the best found fragment and changes a predefined percentage of the notes
to a random allowed pitch. This strategy of iteratively building a sequence of
solutions leads to far better results than randomly restarting the algorithm
when it reaches a local optimum (Lourenço et al., 2003).

A tabu list was also implemented for each neighborhood, in order to keep
the search from getting trapped in circles and revisiting the same fragments.
This is a simple short term memory structure used to prevent moves that
have been performed within the last iterations (Glover and Laguna, 1993).
The tabu lists are implemented as three lists (one for each neighborhood)
that keep track of the notes that have recently been swapped or changed.
The note positions that are on the tabu list, are called tabu active. Moves in
tabu active positions are excluded from the neighborhood. The three tabu
lists can each have a different size, or tabu tenure. The optimal tabu tenure
is determined in the experiment described in the last section of this paper.
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f(s)

s

Figure 4: A perturbation move is used to “jump” out of a local optimum.

To achieve further improvements in solution quality, an adaptive weight
adjustment mechanism was implemented. It is possible that a fragment has
a good value for the objective function, because it scores well on a large
number of subscores, but badly on others. In this case, the adaptive weights
mechanism will steer the search back in the right direction, by increasing the
impact of otherwise insignificant moves. Whenever a perturbation move is
performed, the weight of the subscore with the worst value for the current
fragment, will be increased by one. The score based on these new weights is
referred to as the adaptive score fa(s). It is used to determine the quality of
the fragment during the variable neighborhood search.

Each time a move is performed, the VNS checks if a new best fragment
is found. This comparison is based on the objective function with original
weights f(s).

4.2. General outline of the implemented VNS algorithm

Figure 5 describes the structure of the algorithm in detail. The VNS starts
by generating an initial random fragment according to the rules outlined in
the previous section. This initial fragment is set as the current fragment s.
The swap neighborhood is generated for s and its best feasible fragment s′,
based on the adapted score fa(s), is selected as the new current fragment s.
The local search strategy in the swap neighborhood is repeated until a local
optimum is reached, i.e., no more improving swap moves can be executed.
The algorithm then switches to the change1 neighborhood and performs a
similar local search. If it again gets trapped in a local optimum, a switch
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to the change2 neighborhood is made. When no more improving change2
moves are possible, the search switches back to the swap neighborhood. This
process is repeated until no better fragment can be found in any of the three
neighborhoods.

Local Search, N1

Local Search, N2

Local Seach, N3

Current s 
< 

s at A?

Change r% of 
notes randomly

Yes No

Generate random s

A

Iters = 
maxiters?

Update 
adaptive weights

Iters ++

No

Exit

Exit
Optimum

found?

yes

Yes

s_best 
updated?

Update s_best

Iters = 0

yes

Figure 5: Overview of the developed VNS Algorithm

When all three neighborhoods do not include a better fragment, the
weight adjustment mechanism increases the weight of the worst subscore
of the current fragment s by one. This is followed by a perturbation whereby
the pitch of a fixed percentage r of the notes is randomly changed to any
other pitch in the key. This allows the search to continue.

A check for the “best fragment” sbest is done each time a move is per-
formed. This check is based on the value of the original objective func-
tion f(s). The algorithm stops when either an optimal fragment is found
(f(s) = 0) or when the maximum number of successive perturbations with-
out improvement of the best fragment, sbest, have been encountered. This
stopping criterion is set by the user through the parameter maxiters.
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5. Architecture and Implementation

The VNS algorithm is implemented in C++ as Optimuse (version 2). The
previous version of Optimuse optimized first species counterpoint music and
only dealt with whole notes. The only information that was needed per note
was the midi value of its pitch (integer value). Therefore, a musical fragment
could be represented as a vector of integers. When dealing with fifth species
counterpoint, this representation is no longer valid. A note is now an object
with a data field for pitch, duration, measure, tied and beat (see Table 2).

Table 2: Properties of the Note object

Data field Description

pitch Midi value of the pitch of the note.
duration Duration expressed in number of beats.
measure The number of the measure that the note is in.
tied 0 if the note is not tied, 1 if it is the start of a tie,

2 if it is the end of a tie.
beat Which beat the note falls on (1 to 16).

A musical fragment is a vector which contains all of the note objects in
sequence.

The user can specify the input parameters “key” (e.g. G# major) and
“weights of the subscores” in a file called input.txt. The parameters of the
VNS that are discussed in the next section are set to their optimal value by
default and can be overwritten with command line arguments.

To allow the user to easily interact with Optimuse, a plug-in for the
open source music notation and playback program MuseScore was written in
JavaScript with QtScript Engine. This provides a drop-down menu to access
Optimuse from a user-friendly interface. The generated music is displayed
on the screen and can be played back in MuseScore. An export function
to popular formats such as midi, pdf, lilypond is provided. The music is
transferred from Optimuse to MuseScore in the MusicXML format. An XML-
based music notation file format, designed to facilitate the interchange of
scores (Good, 2001).

The starting point for composing a counterpoint melody is a cantus fir-
mus. The user can either input a new cantus firmus in MuseScore or choose
to generate a new one from the Optimuse drop-down menu. The generated
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cantus firmus is displayed in editable form in MuseScore and can be mod-
ified to suit the user’s expectations. When a satisfactory cantus firmus is
displayed, the Optimuse drop-down menu can again be used to generate a
fitting counterpoint melody.

Optimuse (including the MuseScore plug-in) is available for download at
http://antor.ua.ac.be/optimuse.

6. Experiments

The developed VNS algorithm consists of different components, that are
described in detail in the section on “Variable Neighborhood Search”. As
is common in metaheuristics, many of these components have one or more
parameters that needs to be set, such as the tabu tenure. To thoroughly test
the effectiveness of these components and their possible parameter settings,
an exhaustive statistical experiment was performed. Table 3 displays the
analyzed factors.

Table 3: Parameters

Parameter Values No. of levels

Nc1 - Swap on with ttc1 = 0, ttc1 = 1
16 , ttc1 = 1

8 , off 4
Nc2 - Change1 on with ttc2 = 0, ttc2 = 1

16 , ttc2 = 1
8 , off 4

Nsw - Change2 on with ttsw = 0, ttsw = 1
16 , ttsw = 1

8 , off 4
Random move (randsize) 1

4 changed, 1
8 changed, off 3

Adaptive weights on, off 2
(adj. weights)
Max. number of 5, 20, 50 3
iterations (maxiters)
Length of music (length) 16, 32 measures 2

tti = tabu tenure of the tabu list of neighborhood Ni, expressed as a fraction of the total number of notes.

A full factorial experiment was run to test all possible combinations of
the factors. This resulted in 2304 runs (22 × 32 × 43). The cantus firmus
that is used as an input for generating the counterpoint is composed by the
previous version of Optimuse for each of the 2304 runs. A Multi-Way ANOVA
(Analysis of Variance) was estimated with the open source software package
R (Bates D., 2012). The model examines the influence of the parameter
settings from Table 3 on the musical quality of the end fragment as well as
the necessary computing time.
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An ANOVA model was first calculated to identify the factors with a
significant influence on the solution quality. This linear regression model only
took into account the main effects. To improve the quality of the model, a
second, ANOVA model was constructed taking into account the interaction
effects between the factors that proved to be significant (p < 0.05) in the
first model. The R2 statistic of this improved model is 0.98 (see Table 4),
which means that the model accounts for 98% of the variation around the
mean value of the objective function.

Table 4: Multi-Way ANOVA model with interactions - Summary of Fit

Measure Value

R2 0.9836
R2 Adj 0.9812
F -statistic 410.9 on 293 and 2010 DF
p-value < 2.2e−16

The p-values of the factors are displayed in Table 5. The interaction effects
between more than two factors have been omitted in the table for clarity. The
table reveals that all of the factors have a significant influence on the quality
of the generated musical fragment (p < 0.05), with the exception of the tabu
tenure of the change1 neighborhood. This means that this tabu list does not
have a significant influence on the solution quality. Although it is established
that the other factors have a significant influence on the result, the nature of
this influence still needs to be examined. The mean plots in Figure 6 clarify
which parameter settings have a positive or negative influence on the result
and reveal their optimal settings with respect to the objective function. The
interaction plots were also drawn up in R to verify the conclusions from the
mean plots for the interaction effects between parameters.

The mean plots for all three neighborhoods clearly show an improvement
of the quality of the best found fragment when the respective neighborhood
is active. The average value for the objective function is significantly lower
when the neighborhoods are activated. This means that all three of the local
search neighborhoods make a positive contribution to the solution quality.
The tabu tenture for the change2 and swap neighborhood also have a signifi-
cant influence on the quality of the end result. Figure 6(e) and 6(f) show that
a tabu tenure of 1

16
of the length of the music is optimal. The plot for the

size of the permutation (see Figure 6(g)) offers another important insight.
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Table 5: Multi-Way ANOVA model with interactions

Parameter Df F value Prob (>F)

Nc1 1 9886.2323 < 2.2e−16

Nc2 1 15690.7234 < 2.2e−16

Nsw 1 3909.2959 < 2.2e−16

randsize 2 1110.1724 < 2.2e−16

maxiters 2 322.6488 < 2.2e−16

length 1 165.6053 < 2.2e−16

adj. weights 1 4.0298 0.0448367
ttc1 2 2.2575 0.1048791
ttc2 2 8.271 0.0002646
ttsw 2 3.2447 0.0391833
Nc1:Nc2 1 25198.1739 < 2.2e−16

Nc1:Nsw 1 10264.8395 < 2.2e−16

Nc2:Nsw 1 10753.1655 < 2.2e−16

Nc1:randsize 2 114.2753 < 2.2e−16

Nc2:randsize 2 415.5001 < 2.2e−16

Nsw:randsize 2 117.0946 < 2.2e−16

Nc1:maxiters 2 19.0193 6.564e−09

Nc2:maxiters 2 67.8841 < 2.2e−16

Nsw:maxiters 2 19.1179 5.959e09

randsize:maxiters 4 42.7951 < 2.2e−16

Nc1:length 1 0.7116 0.3989975
Nc2:length 1 0.7192 0.3965164
Nsw:length 1 7.0076 0.0081798
randsize:length 2 1.5681 0.2086959
maxiters:length 2 4.0212 0.0180768
Nc1:adj. weights 1 96.6782 < 2.2e−16

Nc2:adj. weights 1 45.0273 2.519e11

Nsw:adj. weights 1 0.0005 0.9813378
randsize:adj. weights 2 233.8511 < 2.2e−16

maxiters:adj. weights 2 0.8878 0.4117166
length:adj. weights 1 13.0046 0.0003183
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The random jump has the best effect on the solution quality when 12.5% of
the notes are changed. The interaction plots support these conclusions.

Another significant means plot is that of the adaptive weights mecha-
nism (see Figure 6(h)). The mean value of the objective function is slightly
better when this mechanism is functional. A more detailed study of inter-
action plots reveals that the adaptive weights mechanism makes a bigger
positive contribution for fragments of a smaller length. Finally, the last plot
(see Figure 6(i)) shows that a higher number of allowed maximum iterations
produces a better result.

A similar ANOVA model has been constructed to analyze the computing
time of the algorithm. Again all factors have a significant influence, except
for the tabu tenure of the change1 neighborhood and the adaptive weights
mechanism. The means plots in Figure 6 reveal the nature of their influence.
The computing time mostly has an inverse relationship with the solution
quality, which is due to the nature of the stopping criteria. Whenever the
search gets stuck in a local optimum, the quality will remain poor, but the
algorithm’s stopping criteria will be met sooner. This way good components
of the algorithm (e.g. the random jump) cause an increase in computing
time, because the search for better solutions can continue for a longer time,
often resulting in a better solution quality.

An overview of the optimal parameter settings is given in Table 6. Im-
provements in solution quality was the first criterion in determining these
optimal settings.

Table 6: Best parameters

Parameter Values

Nsw - Swap on with ttsw = 1
16

Nc1 - Change1 on with ttc1 = 1
16

Nc2 - Change2 on with ttc2 = 1
16

Random move 1
8

changed
Adaptive weights on
Max. number of iterations 50

The VNS algorithm with the optimal settings was run on a fragment con-
sisting of 32 measures. The evolution of the value of the objective function,
both with original and adapted weights, is displayed in Figure 7. This plot
shows a steep improvement of the solution quality during the first 100 moves,
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followed by a more gradual improvement in the next 600 moves. The many
fluctuations of the score are due to the perturbation moves. Whenever a
local optimum is reached, a temporary increase in the objective score leads
to an eventual decrease. This confirms the importance of the perturbation
move.
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Figure 7: Evolution over time with optimal parameter settings

Figure 8 shows an example of a fifth species counterpoint fragment gen-
erated by Optimuse. The objective score of this counterpoint fragment is
0.556776, which allows it to be considered as fifth species counterpoint ac-
cording to the defined objective function. In comparison, random initial
fragments typically have a score of around 10. Pdf scores and mp3 examples
of Optimuse’s output are available on http://antor.ua.ac.be/optimuse.
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Figure 8: Fifth species counterpoint fragment (Optimuse)
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It is the subjective opinion of the authors that the generated fragment
sounds pleasing to the ear. Yet it can not be considered to be a finished
composition. One of the reasons for that is its lack of theme or sense of
direction, a feature that might be added to Optimuse in the future. The
generated music could however, even at this point, be used by a composer as
a starting point of a composition.

7. Conclusion

A VNS algorithm was developed and optimized that can generate fifth
species counterpoint music based on a cantus firmus. The rules of fifth species
counterpoint were quantified and used as an objective function for this al-
gorithm. The different components of the VNS were thoroughly tested and
analyzed by means of a full factorial experiment. This revealed the significant
components and their optimal parameter settings. The resulting algorithm
was implemented as Optimuse, including a plug-in for MuseScore which pro-
vides a user-friendly environment for interacting with the VNS. The musical
fragments composed by Optimuse can reach good values for the objective
function (see Figure 7) and sound pleasing, at least to the subjective ear of
the author. In it’s current state, the system might offer composers an original
starting point for their compositions.

A possible extension for the future is to allow more voices at the same
time. Four-part counterpoint provides a starting point for this option. The
authors are also currently working on analyzing a large existing database of
music, in order to find criteria specific to a certain style or composer. These
could then be implemented in, or added to, the objective function. This
could, for instance, allow the generation of composer-specific music. Finally,
adding evaluation criteria that enforce a sense of direction or theme could
ensure the generation of more complete compositions.

Appendix A. Detailed breakdown of the objective function

These rules are valid for a fifth species counterpoint fragment of L × 16
measures. L can be seen as the length of the music, expressed in units of 16
measures.
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Table A.7: Description of the horizontal rules

Subscore Description

1 Eight notes (8ths) must move in step.
2 There should be one climax, that can only be repeated after a neighboring tone.

A neighboring note is positioned between two repeated notes and is approached and
left by stepwise motion. The two repeated notes must always be vertically consonant.

3 The climax falls on a strong beat, except when it is repeated after a neighboring tone.
4 Only consonant horizontal intervals are permitted. Horizontal intervals of 0, 1,

2, 3, 4, 5, 7, 8, 9 and 12 semitones (or more octaves) are consonant.
5 Conjunct: stepwise movement should predominate. Two to four leaps per L are

optimal. Stepwise motion is an interval of one or two semitones.
6 Each large leap should be followed by stepwise motion. A leap is an interval of

more than two semitones. A large leap is an interval of more than 4 semitones.
7 Change direction after each large leap.
8 The climax should be melodically consonant with tonic.
9 No more than two consecutive leaps.
10 No more than two large leaps per L.
11 Do not move too long stepwise in same direction.
12 The direction needs to change several times (min. three times per L).
13 The ending note should be tonic.
14 The penultimate note should be the leading tone for CP and the supertonic for CF.

The leading tone is the 7th note of the scale. In the case of a minor scale it should
be raised by half a tone. Preferably in the same octave as the ending note.

15 The beginning and the end of all motion should be consonant.
A motion interval is the interval between the start and end note of an upward or
downward movement.

16 There should be a good balance between ascending and descending motion.
Large motion intervals (> 9 semitones) should be avoided.

17 Maximum four tied notes per L are allowed.
18 No repetition of sequences within a 16 note interval.

A sequence is a group of at least two notes.
19 The largest allowed interval between two consecutive notes is the perfect octave.

Horizontal aspect of the objective function

subscoreH1 (s) =
#8ths not preceded by step + 8ths not left by step

#8ths × 2
(A.1)
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subscoreH2 (s) =
#highest note not as neighb. tone − 1

length
(A.2)

subscoreH3 (s) =
#highest notes on weak beat (except after neighbor. tones)

#highest notes, excl. those after neighb. tones
(A.3)

subscoreH4 (s) = 1 − #consonant intervals

#intervals
(A.4)

subscoreH5 (s) =


0 if 2×L ≤ # leaps ≤ 4×L,
#leaps−(4×L)

length−1−(4×L) if 4×L < # leaps,
#leaps

length−1−(4×L) if 2×L > # leaps.

(A.5)

subscoreH6 (s) =
#large leaps not foll. by stepw. mot.

#large leaps
(A.6)

subscoreH7 (s) =
#large leaps not followed by ∆direction

#large leaps
(A.7)

subscoreH8 (s) =

{
0 if climax is consonant with tonic,

1 if climax is not consonant with tonic.
(A.8)

subscoreH9 =
# of 3 consecutive leaps

length − 3
(A.9)

subscoreH10(s) =

{
0 if #large leaps ≤ 2×L,
#large leaps−(2×L)
length−1−(2×L) if #large leaps > 2×L.

(A.10)

subscoreH11(s) =

{
0 if longest stepwise seq. ≤ 5,
length of longest stepwise seq.

length if longest stepwise sequence > 5.

(A.11)

subscoreH12(s) =

{
0 if # direction changes ≥ 3×L,

1 − #direction changes
3×L if # direction changes < 3×L.

(A.12)

subscoreH13(s) =

{
0 if end note is tonic,

1 if end note is not tonic.
(A.13)
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subscoreH14(s) =



0 if pen. is leading note (CP) or supertonic (CF)

in same oct. as end ,

0.5 if pen. is leading note (CP) or supertonic (CF),

not in same oct. as end note,

1 if pen. is not leading note (CP) or supertonic (CF).

(A.14)

subscoreH15(s) =
#times that start and end of motion are dissonant

#motion intervals
(A.15)

subscoreH16(s) =
#motion intervals > 9 semitones

#motion intervals
(A.16)

subscoreH17(s) =
#notes repeated more than (2 × L) times

length
(A.17)

subscoreH18(s) =
#notes that are part of a rep. seq. within a 4 measure interval

length
(A.18)

subscoreH19 =
#intervals > 12 semitones

#intervals
(A.19)

Vertical aspect of the objective function

subscoreV1 (s) =
#dissonant whole notes

#whole notes
(A.20)

subscoreV2 (s) =
#dissonant half notes exc. passing tones or weak beats

#half notes
(A.21)

subscoreV3 (s) =
#dissonant quarters exc. passing and neighb. tones or weak beats

#quarters
(A.22)

subscoreV4 (s) =
pairs of eight notes with both notes dissonant

#pairs of eight notes
(A.23)

subscoreV5 (s) =
#non-allowed unisons

#notes
(A.24)

subscoreV6 (s) =
#distances > 16 semitones

length
(A.25)

subscoreV7 (s) =
#crossed notes

length
(A.26)

subscoreV8 (s) =
#overlaps

#length-1
(A.27)
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Table A.8: Description of the vertical rules

Subscore Description

1 Whole notes should always be vertically consonant.
2 Half notes should always be consonant on first beat, unless they are

suspended and continued stepwise and downward. They can be dissonant on
second beat if they are a passing tone.

3 Quarter notes should always be consonant on the first beat, unless they are
suspended and continued stepwise and downward. They can be dissonant on
other beats if they are a passing tone or a neighboring tone.

4 Eight notes occur in pairs - at least one of them should be vertically consonant.
5 Unisons are allowed on the 1st beat through suspension if they are

tied over or followed by stepwise motion.
6 The maximum allowed distance between voices is 16 semitones, except on the climax.
7 There should be no crossing.
8 Avoid the overlapping of parts.
9 From unison to octave (and vice versa) is forbidden.
10 The ending should be a unison or octave.
11 All perfect intervals (also perfect 4th) should be approached by contrary or

oblique motion. Intervals of 0, 5, 7 and 12 semitones are considered perfect.
12 Avoid leaps sim. in cf and cp, especially large leaps (> 6 semitones) in

the same direction.
13 Use all types of motion.
14 The climax of the CF and CP should not coincide.
15 Successive unisons, octaves and fifths on first beats are only valid when

separated by three quarter notes.
16 Successive unisons, octaves and fifths not on first beats are only valid when separated

by at least two notes. For afterbeat fifths and octaves only separated by a single
quarter this is allowed in the case of a consonant suspension of a quarter note.

17 No ottava or quinta battuda.
18 Best ending is a dissonant suspension into the leading tone. This can be decorated.
19 Thirds, sixths and tenths should predominate.

subscoreV9 (s) =
#motion from unison to octave and vsvs

#intervals
(A.28)

subscoreV10(s) =

{
0 if the ending is unison or octave,

1 otherwise.
(A.29)
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subscoreV11(s) =
#perfect intervals not appr. by contr. or obl. motion

#intervals
(A.30)

subscoreV12(s) =
(#sim leaps not same dir) + (#sim leaps > 6 semit. same dir)

2 × #intervals
(A.31)

subscoreV13(s) = 1 − #different types of motion used

4
(A.32)

subscoreV14(s) =

{
1 if the climax of the CF and CP coincide,

0 if the climax of the CF and CP do not coincide.
(A.33)

subscoreV15(s) =
(#succ. unis., 8ths or 5ths on first beats not sep. by 3 quarters)

#measures − 1
(A.34)

subscoreV16(s) =
(#succ. unis., 8ths or 5ths not first beats not sep. by 2 unsusp.n.

#(notes - measures)
(A.35)

subscoreV17(s) =
#ottava and quinta battudas

#measures
(A.36)

subscoreV18(s) =


1 if ending is dissonant suspension into the

leading tone (can be decorated),

0.5 if ending is a suspension,

0 otherwise.

(A.37)

subscoreV19(s) =


0 if # thirds, sixths

and tenths ≥ 50%,

1 − 2×# thirds, sixths and tenths
# notes otherwise.

(A.38)
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