
A Tabu Search Algorithm to Generate Piano
Fingerings for Polyphonic Sheet Music

Matteo Balliauw, Dorien Herremans,
Daniel Palhazi Cuervo, and Kenneth Sörensen

University of Antwerp, Faculty of Applied Economics,
Prinsstraat 13, 2000 Antwerp, Belgium

{matteo.balliauw,dorien.herremans,daniel.palhazicuervo,

kenneth.sorensen}@uantwerpen.be

http://www.uantwerpen.be

Abstract. A piano fingering is an indication of which finger is to be
used to play each note. Good piano fingerings enable pianists to study,
remember and play pieces fluently. In this paper, we propose an algorithm
to find a good piano fingering automatically. The tabu search algorithm
is a metaheuristic that can find a good solution in a short amount of
execution time. The algorithm implements an objective function that
takes into account the characteristics of the pianist’s hand in complex
polyphonic music.

Keywords: Piano Fingering, Tabu Search, Metaheuristics, OR in Mu-
sic, Combinatorial Optimisation

1 Introduction

Piano fingerings are often added by players to sheet music in order to indicate the
appropriate finger that should be used to play each note. For a piano player, it
is important to have good piano fingerings at hand as not every finger is equally
suited to play each note. Some combinations of fingers are better suited to play
certain note sequences than others [1]. In addition, having a clear piano fingering
can help a pianist study and remember a piece. A well thought out piano fingering
can also enhance the interpretation and the musicality of a performance [2].

The purpose of this research is to help pianists with little experience in de-
ciding on a good fingering and pianists who quickly want to obtain an easy
fingering. It requires a considerable amount of time and expertise to elaborate a
suitable fingering for a piano piece. In this paper, we look at the generation of a
good piano fingering as a combinatorial optimisation problem. In this problem,
a finger has to be assigned to every note in the piece. The quality of a fingering is
evaluated by means of an objective function that measures playability. This ob-
jective function also takes into account the characteristics of the player’s hands.
We develop an efficient optimisation algorithm that is able to find a good fin-
gering solution for a complex polyphonic piano piece in a reasonable amount of
execution time. To this end, we developed a tabu search (TS), as it has already



2. LITERATURE REVIEW

been applied efficiently to many other combinatorial optimisation problems such
as the travelling salesman problem [3] and the vehicle routing problem [4]. More
recently, it has been also used in the field of music for computer aided composing
[5].

This paper is divided into six sections. Section 2 gives a short overview of the
literature concerning the generation of piano fingerings and algorithms developed
to solve this problem. In Section 3, a mathematical formulation of the problem
is introduced. Section 4 explains in detail the tabu search algorithm and its
implementation. In Section 5, we show and discuss an example of a fingering
generated by the TS for an existing piece of music. The final section gives some
conclusions and advice for future research.

2 Literature Review

In the 18th century exercises to learn frequently used fingering combinations
fluently were published for the first time. Carl Philipp Emanuel Bach has been
amongst the first musicians to write down an entire set of rules for piano fin-
gering. Previously, this was only transmitted orally through lessons. In the 19th
century, many composors followed his example [6]. At the end of the 20th cen-
tury, the first attempts to generate a mathematical formulation that can model a
piano fingering and develop a suitable algorithm were published. Similar research
has been carried out amongst others for string instruments [7].

2.1 Fingering Quality

In order to evaluate a piano fingering, it is necessary to quantify how easy and
fluently it can be played. Three important dimensions of a piano fingering add
to its quality. The main element is the ease of playing, which is considered in
this research. Additional dimensions that add to the quality of a fingering are
the ease of memorisation and the facilitation of the interpretation [8].

The main approach for evaluating the quality of a piano fingering is using an
objective fucntion based on hand-made rules [8][9][10]. This approach is also fol-
lowed in this research. Another possibility is using a machine learning approach
such as Markov Models based on transition matrices [2][11][12][13] or Hidden
Markov Models (HMM) [14] based on probabilities.

In order to evaluate the playability of a fingering the set of rules proposed
by Parncutt et al. [8] and Parncutt [9] serve as the basis for this research. Every
source of difficulty in a fingering, both monophonic and polyphonic, is assigned
a cost. Every cost factor is attributed a weight. The objective function consists
of the weighted sum of costs and is minimised. This approach has the advantage
that pianists can express their trade-offs between the sources of difficulty. This
can be done by assigning different weights to each source of difficulty in the
objective function. Parncutt’s original cost factors for piano fingering have been
expanded by Jacobs [15] and Lin and Liu [16]. More recently, some improvements
and additions were made by the authors [17]. It is that set that is used in this

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 2



3. PROBLEM DESCRIPTION

research. Issues such as personal preferences, the use of the left hand and the
difference between playing a black and white key have been ignored previously
as indicated by other authors [18], but are taken into account in this paper.

2.2 Algorithms Used in Literature

In many applications, dynamic programming is used to find optimal piano fin-
gerings according to the selected objective function. Dijkstra’s algorithm has
been used by Parncutt et. al. [8] on monophonic music and by Al Kasimi et. al.
[13] on short monophonic pieces with some simple polyphonic chords. Similar
dynamic programming algorithms have been used in literature by Robine [2] and
Hart et. al. [11] on monophonic music. A rule based expert system that opti-
mises a fitness function for monophonic music was developed by Viana et. al.
[10] and for the HMM-model in monophonic music, Yonebayashi et. al. used a
Viterbi Algorithm [14]. Although some improvements have been made to reduce
the computing time of these algorithms, it is often impossible to deal with com-
plex polyphonic pieces (where simultaneous notes can have different lengths).
For this reason, we develop a tabu search metaheuristic algorithm that can deal
with complex polyphony in an effective and efficient way. This is explained in
Section 4.

3 Problem Description

When generating a piano fingering, it is necessary to decide which finger should
play each note. Each finger is represented using the traditional coding from 1
(thumb) to 5 (little finger).

It is also necessary to define an objective function that measures the quality
of a solution, by looking at the playability of the piece. This objective function
was described by Balliauw [17] as an adaptation of the work of Parncutt et al.
[8] and Jacobs [15].

The objective function takes into account a distance matrix, displayed in
Table 1. This contains information for each finger pair on the distances that are
easy and difficult to play, respectively called Rel (relaxed range), Comf (com-
fortable range) and Prac (practically playable range). These allowed distances
can be adapted by the user of the algorithm according to the biomechanics of
his hand and are calculated by subtracting the corresponding values of the keys
in Fig. 1.

The objective function consists out of three sets of rules Using this distance
matrix, a first set of rules can compare the actual distance and the allowed
distance between two simultaneous or consecutive notes for the proposed pair
of fingers to play these two notes. A penalty score is applied when the actual
distance is larger than the different types of allowed distances.

As Jacobs [15] argued, the distances in the previous research of Parncutt et.
al. [8] were not accurate. To calculate these penalties more accurately, Balliauw
[17] increased the distances between E and F and between B and C to two

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 3



3. PROBLEM DESCRIPTION

half notes, to equal the distances between other adjacent white keys on a piano
keyboard.

The second set of rules is implemented to prevent unnecessary and unhandy
hand changes. The third group of rules prevents difficult finger movements in
monophonic music. In this third set, two additional rules proposed by Balliauw
promote the choice of logical, commonly used finger patterns.

The weighted penalty scores of these rules, that are included in Table 2,
are summed to obtain the objective function value. As this value indicates the
difficulty of the fingering, it has to be minimised.

Fig. 1. Piano keyboard with additional imaginary black keys.

Table 1. Example distance matrix that describes the pianist’s right hand.

Finger pair MinPrac MinComf MinRel MaxRel MaxComf MaxPrac

1-2 -10 -8 1 6 9 11
1-3 -8 -6 3 9 13 15
1-4 -6 -4 5 11 14 16
1-5 -2 0 7 12 16 18
2-3 1 1 1 2 5 7
2-4 1 1 3 4 6 8
2-5 2 2 5 6 10 12
3-4 1 1 1 2 2 4
3-5 1 1 3 4 6 8
4-5 1 1 1 2 4 6

The problem also takes into account one hard constraint. This constraint
here is that one finger can not be used to play two different, simultaneous notes,
as this is no feasible to execute on a real piano.

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 4



4. TABU SEARCH ALGORITHM

T
a
b
le

2
.

S
et

o
f

ru
le

s
co

m
p

o
si

n
g

th
e

o
b

je
ct

iv
e

fu
n
ct

io
n

[1
7
].

R
u
le

A
p
p
li
c
a
ti
o
n
D
e
sc
ri
p
ti
o
n

S
c
o
re

1
A

ll
F

o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
tw

o
co

n
se

cu
ti

v
e

n
o
te

s
is

b
el

ow
M
i
n
C
o
m
f

o
r

ex
ce

ed
s

M
a
x
C
o
m
f
.

+
2

2
A

ll
F

o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
tw

o
co

n
se

cu
ti

v
e

n
o
te

s
is

b
el

ow
M
i
n
R
e
l

o
r

ex
ce

ed
s
M
a
x
R
e
l
.

+
1

3
M

o
n
o
p
h
o
n
ic

If
th

e
d
is

ta
n
ce

b
et

w
ee

n
a

fi
rs

t
a
n
d

th
ir

d
n
o
te

is
b

el
ow

M
i
n
C
o
m
f

o
r

ex
ce

ed
s
M
a
x
C
o
m
f
:

a
d
d

o
n
e

p
o
in

t.
In

a
d
d
it

io
n
,

if
th

e
p
it

ch
o
f

th
e

se
co

n
d

n
o
te

is
th

e
m

id
d
le

o
n
e,

is
p
la

y
ed

b
y

th
e

th
u
m

b
a
n
d

th
e

d
is

ta
n
ce

b
et

w
ee

n
th

e
fi
rs

t
a
n
d

th
ir

d
n
o
te

is
b

el
ow

M
i
n
P
r
a
c

o
r

ex
ce

ed
s
M
a
x
P
r
a
c
:

a
d
d

a
n
o
th

er
p

o
in

t.
F

in
a
ll
y,

if
th

e
fi
rs

t
a
n
d

th
ir

d
n
o
te

h
av

e
th

e
sa

m
e

p
it

ch
,

b
u
t

a
re

p
la

y
ed

b
y

a
d
iff

er
en

t
fi
n
g
er

:
a
d
d

a
n
o
th

er
p

o
in

t.

+
1

+
1

+
1

4
M

o
n
o
p
h
o
n
ic

F
o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
a

fi
rs

t
a
n
d

th
ir

d
n
o
te

is
b

el
ow

M
i
n
C
o
m
f

o
r

ex
ce

ed
s

M
a
x
C
o
m
f
.

+
1

5
M

o
n
o
p
h
o
n
ic

F
o
r

ev
er

y
u
se

o
f

th
e

fo
u
rt

h
fi
n
g
er

.
+

1
6

M
o
n
o
p
h
o
n
ic

F
o
r

th
e

u
se

o
f

th
e

th
ir

d
a
n
d

th
e

fo
u
rt

h
fi
n
g
er

(i
n

a
n
y

co
n
se

cu
ti

v
e

o
rd

er
).

+
1

7
M

o
n
o
p
h
o
n
ic

F
o
r

th
e

u
se

o
f

th
e

th
ir

d
fi
n
g
er

o
n

a
w

h
it

e
k
ey

a
n
d

th
e

fo
u
rt

h
fi
n
g
er

o
n

a
b
la

ck
k
ey

(i
n

a
n
y

co
n
se

cu
ti

v
e

o
rd

er
).

+
1

8
M

o
n
o
p
h
o
n
ic

W
h
en

th
e

th
u
m

b
p
la

y
s

a
b
la

ck
k
ey

:
a
d
d

a
h
a
lf

p
o
in

t.
A

d
d

o
n
e

m
o
re

p
o
in

t
fo

r
a

d
iff

er
en

t
fi
n
g
er

u
se

d
o
n

a
w

h
it

e
k
ey

ju
st

b
ef

o
re

a
n
d

o
n
e

ex
tr

a
fo

r
o
n
e

ju
st

a
ft

er
th

e
th

u
m

b
.

+
0
.5

+
1

+
1

9
M

o
n
o
p
h
o
n
ic

W
h
en

th
e

fi
ft

h
fi
n
g
er

p
la

y
s

a
b
la

ck
k
ey

:
a
d
d

ze
ro

p
o
in

ts
.

A
d
d

o
n
e

m
o
re

p
o
in

t
fo

r
a

d
iff

er
en

t
fi
n
g
er

u
se

d
o
n

a
w

h
it

e
k
ey

ju
st

b
ef

o
re

a
n
d

o
n
e

ex
tr

a
fo

r
o
n
e

ju
st

a
ft

er
th

e
fi
ft

h
fi
n
g
er

.
+

1
+

1
1
0

M
o
n
o
p
h
o
n
ic

F
o
r

a
th

u
m

b
cr

o
ss

in
g

o
n

th
e

sa
m

e
le

v
el

(w
h
it

e-
w

h
it

e
o
r

b
la

ck
-b

la
ck

).
+

1
1
1

M
o
n
o
p
h
o
n
ic

F
o
r

a
th

u
m

b
o
n

a
b
la

ck
k
ey

cr
o
ss

ed
b
y

a
d
iff

er
en

t
fi
n
g
er

o
n

a
w

h
it

e
k
ey

.
+

2
1
2

M
o
n
o
p
h
o
n
ic

F
o
r

a
d
iff

er
en

t
fi
rs

t
a
n
d

th
ir

d
n
o
te

,
p
la

y
ed

b
y

th
e

sa
m

e
fi
n
g
er

,
a
n
d

th
e

se
co

n
d

p
it

ch
b

ei
n
g

th
e

m
id

d
le

o
n
e.

+
1

1
3

A
ll

F
o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
tw

o
fo

ll
ow

in
g

n
o
te

s
is

b
el

ow
M
i
n
P
r
a
c

o
r

ex
ce

ed
s
M
a
x
P
r
a
c
.

+
1
0

1
4

P
o
ly

p
h
o
n
ic

A
p
p
ly

ru
le

s
1
,

2
(b

o
th

w
it

h
d
o
u
b
le

d
sc

o
re

s)
a
n
d

1
3

w
it

h
in

o
n
e

ch
o
rd

.
1
5

A
ll

F
o
r

co
n
se

cu
ti

v
e

sl
ic

es
co

n
ta

in
in

g
ex

a
ct

ly
th

e
sa

m
e

n
o
te

s
(w

it
h

id
en

ti
ca

l
p
it

ch
es

),
p
la

y
ed

b
y

a
d
iff

er
en

t
fi
n
g
er

,
fo

r
ea

ch
d
iff

er
en

t
fi
n
g
er

.
+

1

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 5



4. TABU SEARCH ALGORITHM

4 Tabu Search Algorithm

A common approach to solve combinatorial optimisation problems are exact
algorithms, that ensure that the optimal solution is found. The problem is that
the execution time can grow exponentially with the size of the instance treated.
For this reason, in the worst case they are often suited to deal with short or
simple instances only. Metaheuristics form an alternative approach to deal with
complex polyphonic music (large and complex instances) in a reasonable amount
of calculation time, without giving up too much of the optimality. Metaheuristics
offer guidelines to build algorithms that make use of rules of thumb, so called
heuristics [19].

Different categories of metaheuristics exist. One such category are Local
Search (LS) metaheuristics. LS starts from a current solution, to which a small,
incremental change is made, called a move. All moves performing the same
changes are part of the same move type. The set of solutions that can be reached
from the current solution by a certain move type is called the neighbourhood of
the solution [19]. A local optimum is reached when the neighbourhood contains
no improvement for the current solution.

One can amongst others escape from such a local optimum or avoid get-
ting trapped into circles by using a tabu list. This list contains a number (the
actual value is called tabu tenure) of moves that were performed right before
the current move and that are excluded from the neighbourhood of the current
solution. These moves are tabu active. The move with the best objective func-
tion value from this neighbourhood is performed, even if it worsens the current
solution. In this way, the algorithm avoids getting trapped into circles and can
explore the solution space around the local optimum to eventually arrive at a
better optimum. The tabu tenure and the amount of allowed iterations without
improvement are the two parameters determining such a tabu search [20].

When no more improvements can be made to a local optimum within one
neighbourhood, the algorithm can move to another neighbourhood, defined by a
different move type which can contain a better optimum. This strategy is called
Variable Neighbourhood Search (VNS) [21].

The TS algorithm, displayed schematically in Algorithm 1, starts from a
random initial solution. The optimisation processes for both hands are identical.
First, a preprocessing step Swap is applied to the initial solution. This step makes
significant improvements in a very short amount of time, by swapping a finger
in the entire piece. This preprocessing step has a positive impact on the solution
quality and reduces the required execution time.

In the algorithm, there are three neighbourhood operators o ∈ O, each de-
fined by a move type. Each time, the best solution from the neighbourhood is
selected with a steepest descent strategy. As a result, the move that leads to the
best fingering is chosen in each iteration. A first neighbourhood, called Change1,
is defined by a move type that changes the finger of a note to any other possible
finger. The move type Change2 is similar to Change1, whereby it is expanded
to two adjacent or simultaneous notes. Sometimes, changing two adjacent notes
together might improve the solution, whereas this move cannot be identified by

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 6



4. TABU SEARCH ALGORITHM

Algorithm 1: Tabu Search Algorithm for each Hand

Input : File F
Output: File F ′

1 P ← Parse(F)
2 S ← Rand Sol(P)
3 S ← Best Sol(Swap)
4 S ′ ← S
5 Init Tabu List(tabutenure)
6 T ← True
7 while T = True do
8 for o ∈ O do
9 for i <maxiters do

10 N ← Nbho(S)
11 Exclude from N : tij ∈ Tabu List
12 S ′′ ← Best Sol(N )
13 Update Tabu List
14 if f(S ′′) < f(S ′) then
15 S ′ ← S ′′

16 i = 0

17 else
18 i + +

19 if f(S ′) < f(S) then
20 S ← S ′

21 T ← True

22 else
23 T ← False

24 Clear Tabu List()

25 P ← S
26 F ′ ← Unparse(P)

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 7



4. TABU SEARCH ALGORITHM

Change1. This is because changing one note separately might have a detrimental
effect on the fingering, and therefore might be discarded. To increase the inter-
changeability of two fingers in polyphonic music, moves of SwapPart will change
the fingering of a note a from k to l, where the fingering from all notes b, played
with finger l, starting before the end of note a and ending after the start of note
a, are changed from l to k. An example of each move type can be found in Figure
2.

(a) Change1 (b) Change2 (c) SwapPart

Fig. 2. Examples of each move explored in every neighbourhood considered by the
Tabu Search algorithm.

To perform Tabu Search in a neighbourhood o ∈ O, a tabu list is initialized
after the preprocessing step. The tabu tenure is defined as a percentage of the
number of notes in that hand. The tabu list considers as a forbidden move
changing or swapping the fingering of a specific note i to fingering j, if the couple
tij is tabu active. A couple tij becomes tabu active after the fingering of note i
has been moved to finger j and remains active for a number of moves, equal to the
tabu tenure. As a result, it is possible that moving to the best neighbour reduces
the quality of the current solution. The number of allowed iterations without
improvement is defined as a parameter, maxiters. In this way, the algorithm
can explore the solution space around the current solution and escape from a
local optimum, given that enough iterations without improvement are allowed
(here defined as a percentage of the tabu tenure). A different optimisation path
can hence be pursued to arrive in a different area of the solution space and escape
the local optimum. An example is shown in Fig. 3.

When the number of iterations in a neighbourhood reaches maxiters with-
out improving the solution in one neighbourhood, the content of the tabu list is
cleared and in order to escape from the local optimum, the algorithm starts to
perform TS in a subsequent neighbourhood o. When a loop through all neigh-
bourhoods o ∈ O improved the solution S, all neighbourhoods o are explored
again. Otherwise, the algorithm has reached its final solution and it is outputted
to a MusicXML file. This output can be processed by open source music sheet
software, like MuseScore1.

1 Available from musescore.org

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 8



5. RESULTS

0 5 10 15 20
20

40

60

80

100

Move number

O
b
j
e
c
t
i
v
e
f
u
n
c
t
i
o
n

Best solution

Current solution

Fig. 3. Example of the execution of the TS algorithm.

5 Results

Fig. 4 shows an example output of the described TS for the first variation on
the Saraband from G. F. Händels Suite in D minor (HWV 437). The algorithm
was run with all neighbourhoods included, the tabu tenure set as 50 % of the
number of notes in the hand and the allowed iterations without improvement
set as 5 times the tabu tenure (i.e. 500 %).

The output of the algorithm in Fig. 4 show first eight bars of the piece. The
execution time is very short (5 seconds) and the difficulty score was 712. Experts
confirmed that the solution displayed in the output is easily playable and thus
forms a good fingering.

6 Conclusion and Future Research

The problem of finding a good piano fingering has been described as a combi-
natorial optimisation problem. Different sources of difficulty in the implemented
objective function allow to deal with complex polyphony; to analyse the left and
right hand; and to have the option to adapt some parameters to personal prefer-
ences and biomechanics of the hand. A tabu search algorithm, a metaheuristic,
was implemented. We showed that it can find in a relatively short amount of
execution time a very good solution which has been illustrated by an output.

In the future, this research could be expanded by including rules in the objec-
tive function that specify the interpretation and memorisation aspects of a piano
fingering. Examples of such rules could be the use of a strong finger on the first
beat of a bar, or using the same fingering patterns for identical note sequences.
The objective function could also be improved by verifying if machine learning
techniques can be applied using a database of piano fingerings. The algorithm
could benefit from the inclusion of extra, more sophisticated neighbourhoods.

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 9



6. CONCLUSION AND FUTURE RESEARCH

Fig. 4. Output for the first eight bars of the first variation on the Saraband from Suite
in D minor (HWV 437) by G.F. Händel.

References

1. Sloboda, J.A., Clarke, E.F., Parncutt, R., Raekallio, M.: Determinants of finger
choice in piano sight-reading. J. Exp. Psychol.-Hum. Percept. Perform. 24, 185–203
(1998)

2. Robine, M.: Analyse automatique du doigté au piano. In: Proceedings of the
Journées d’Informatique Musicale, pp. 106–112 (2009)

3. Fiechter, C.-N.: A parallel tabu search algorithm for large travelling salesman prob-
lems. Discrete Appl. Math. 51, 243 – 267 (1994)

4. Gendreau, M., Hertz, A., Laporte, G.: A Tabu Search Heuristic for the Vehicle
Routing Problem. Manag. Sci. 40, 1276 – 1290 (1994)

5. Herremans, D.: Tabu Search voor de Optimalisatievan Muzikale Fragmenten. Mas-
ter’s thesis at UAntwerp, Faculty of Applied Economics, Antwerp (2005)

6. Gellrich, M., Parncutt, R.: Piano Technique and Fingering in the Eighteenth and
Nineteenth Centuries: Bringing a Forgotten Method Back to Life. B. J. Music Ed.
15, 5–23 (1998)

7. Sayegh, S. I.: Fingering for String Instruments with the Optimum Path Paragdigm.
Comput. Music J. 13, 76 – 84 (1989)

8. Parncutt, R., Sloboda, J.A., Clarke, E.F., Raekallio, M., Desain, P.: An ergonomic
model of keyboard fingering for melodic fragments. Music Percept. 14, 341–382
(1997)

9. Parncutt, R.: Modeling piano performance: Physics and cognition of a virtual pi-
anist. In: Proceedings of Int. Computer Music Conference, pp. 15–18 (1997)

10. Viana, A.B., de Morais Júnior, A.C. Technological improvements in the siedp. In:
IX Brazilian Symposium on Computer Music, Campinas, Brazil (2003)

11. Hart, M., Bosch, R., Tsai, E.: Finding optimal piano fingerings. The UMAP Jour-
nal, 2, 167–177 (2000)

12. Radicioni, D.P., Anselma, L., Lombardo, V.: An algorithm to compute fingering
for string instruments. In: Proceedings of the National Congress of the Associazione
Italiana di Scienze Cognitive, Ivrea, Italy (2004)

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 10



7. CHECKLIST OF ITEMS TO BE SENT TO VOLUME EDITORS

13. Al Kasimi, A., Nichols, E., Raphael, C.: A simple algorithm for automatic gen-
eration of polyphonic piano fingerings. In: 8th International Conference on Music
Information Retrieval, Vienna (2007)

14. Yonebayashi, Y., Kameoka, H., Sagayama, S. Automatic decision of piano fingering
based on a hidden markov models. In: IJCAI, pp. 2915–2921 (2007)

15. Jacobs, J.P.: Refinements to the ergonomic model for keyboard fingering of Parn-
cutt, Sloboda, Clarke, Raekalliio and Desain. Music Percept., 18, 505–511 (2001)

16. Lin, C.-C., Liu, D.S.-M.: An intelligent virtual piano tutor. In: Proceedings of the
2006 ACM international conference on Virtual reality continuum and its applica-
tions, pp. 353-356 (2006)

17. Balliauw, M.: A variable neighbourhood search algorithm to generate piano finger-
ings for polyphonic sheet music. Master’s thesis at UAntwerp, Faculty of Applied
Economics, Antwerp (2014)

18. Sébastien, V. Ralambondrainy, H., Sébastien, O. Conruyt, N.: Score analyzer: Au-
tomatically determining scores difficulty level for instrumental e-learning. In: ISMIR,
pp. 571-576 (2012)

19. Sörensen, K., Glover, F.: Metaheuristics. In: Glass, S.I., Fu, M.C. (eds.) Encyclo-
pedia of Operations Research and Management Science, pp. 960–970 (2013)

20. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers (1993)
21. Mladenović, N., Hansen, P.: Variable neighbourhood search. Computers and Op-

erations Research, 24, 1097–1100 (1997)

7 Checklist of Items to be Sent to Volume Editors

Here is a checklist of everything the volume editor requires from you:

� The final LATEX source files

� A final PDF file

� A copyright form, signed by one author on behalf of all of the authors of the
paper.

� A readme giving the name and email address of the corresponding author.

8 info

8.1 Checking the PDF File

Kindly assure that the Contact Volume Editor is given the name and email
address of the contact author for your paper.

8.2 Copyright Forms

The copyright form may be downloaded from the “For Authors” (Information for
LNCS Authors) section of the LNCS Website: www.springer.com/lncs. Please
send your signed copyright form to the Contact Volume Editor, either as a
scanned pdf or by fax or by courier. One author may sign on behalf of all of the
other authors of a particular paper. Digital signatures are acceptable.

Preprint accepted for publication in Mathematics and Computation in Music.
Lecture Notes in Computer Science, Springer, 9110:149-160.

Page 11


