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Abstract.

Inspired by recent advancements in the field of computer vision, specifically models for generating higher-resolution images

from low-resolution images, we investigate the utility of a deep convolutional autoencoder for downscaling and bias correcting

climate projections for South East Asia (SEA). Downscaled projections of 2 m surface temperature are generated, using autoen-

coders trained with data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and data from the fifth generation5

ECMWF atmospheric reanalysis (ERA5) project. Using CMIP5 projections as an input, three sets of downscaled data are gen-

erated using three methods of autoencoder training, which allow us to determine how autoencoder downscaling and bias cor-

rection modify temperature values. Where possible, the downscaled outputs are compared against the Southeast Asia Regional

Climate Downscaling/Coordinated Regional Climate Downscaling Experiment–Southeast Asia (SEACLID/CORDEX–SEA)

project and outputs from available CMIP6 experiments, to evaluate performance. The autoencoders are found to excel at the10

rapid generation of highly spatially-resolved climate projections for surface temperature. Realistic spatial features due to coastal

and topographic variation are generated by the autoencoder, which are not present in the CMIP5 projections. Additionally, the

autoencoders are capable of generating forecast data with regional temperature profiles exceeding that of those appearing in the

training set (out-of-sample extrapolation). Seasonal temperature cycles are retained after downscaling throughout the region,

despite the absence of temporal information provided to the model. However, autoencoders trained to carry out bias correction15

display a tendency to smooth daily average temperatures and reduce daily highs and lows beyond that which can be expected

to be realistic. Without bias correction, downscaled outputs have a reduced improvement in spatial resolution but the daily tem-

perature profiles of the CMIP5 input forecasts are maintained. Autoencoders rely on the presence of structural features in the

datasets to carry out downscaling, and so performance over the oceans is reduced as strong temperature gradients are absent.

For this reason, ocean warming is not well represented, an artefact which is not immediately clear in the downscaled outputs.20

This study demonstrates the importance of rigorous analysis of ’black-box’ methods, which can generate non-obvious artefacts

that could potentially create misleading results. Despite these limitations, Autoencoders are clearly capable of generating much

needed high-resolution climate projections, and strategies to improve upon shortcomings are numerous and well established.
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1 Introduction25

Tropical regions with large coastlines and small islands are particularly at risk from climate change (Ge et al., 2021; Lee et al.,

2013), yet high-resolution climate projection data for Southeast Asia is lacking. Global Climate models (GCMs) typically have

spatial resolutions in the order of 100 km, roughly equivalent to the width of many archipelagos, peninsulas and islands which

make up Southeast Asia (Chotamonsak et al., 2011). This significantly reduces the utility of GCM projection data, as decision

makers lack key information at sufficient spatial scales. Increasing the spatial resolution and accuracy of climate projections30

must therefore be considered a priority, as well as the dissemination and utilisation of this information so that adaptive measures

can be taken (Schär et al., 2020).

Generating high spatial-resolution climate projections can be achieved via dynamical downscaling or via statistical methods.

Dynamical downscaling using regional climate models (RCMs) generates full physical simulations of future climate, but are

subject to the same limitations as GCMs including sensitivity to the representation of sub-grid atmospheric processes by35

parameterisation schemes (Tangang et al., 2020) (Juneng et al., 2016a), and require similar levels of computational resource to

full scale GCMs. Additionally, RCMs are highly sensitive to the quality of boundary and initialisation settings (Warner et al.,

1997). This is problematic for RCMs in SEA due to the regions interactions with large scale atmospheric processes such as

monsoonal activity (both north-east and south-west monsoon) (McSweeney et al., 2015) and El Nin˜o/Southern Oscillation

(ENSO (Thirumalai et al., 2017). The Southeast Asia Regional Climate Downscaling (SEACLID) / Coordinated Regional40

Downscaling Experiment (CORDEX) is currently the only dynamically downscaled dataset publicly available. It uses scenarios

and models from the CMIP5 suite of experiments. The increased spatial resolution is suitable for most applications, between

25-36 km, and future experiments aim to increase the spatial resolution to 3-5 km, using data from the latest (Coupled Model

Intercomparison Project) CMIP6. However, the delay in publication of CORDEX data means that decision makers now have

both higher resolution CORDEX data (RCP4.5 and RCP8.5 only) or updated and mid-range resolution CMIP6 data to choose45

from, of which around half of the 100 models are published. CMIP6 experiments have greater spatial and temporal resolution

than the previous CMIP5 experiments, a greater number of scenarios, and are published 10 years after CMIP5, representing a

significant improvement in modelling and increased quantity and quality of observational data. However, the spatial resolution

is still only of the order of 0.25◦× 0.25◦, 100 km nominal resolution for land, although limited HighResMIP data is already

available at 50 km x 50 km resolution.50

Traditional statistical downscaling methodologies derive statistical relationships between GCM ouputs and long-term ob-

servational datasets to generate high resolution datasets. Statistical methods are computationally faster and cheaper than dy-

namical modelling but performance is limited by the lack of region-specific long term, high quality weather station data.

Long-term observational data is not readily available for SEA as other regions, which makes statistical downscaling more

difficult. Additionally the inability of statistical models to replicate complex non-linear processes has hindered their us-55

age, but offer a complimentary approach to dynamical downscaling now climate data is more widely available. In 2020,

high resolution and bias corrected statistically downscaled data was made available via the CCAFS-Climate data portal

(http://www.ccafs-climate.org/statistical_downscaling_delta_cmip5/) as mean monthly maximum and minimum temperature

2

https://doi.org/10.5194/egusphere-2022-234
Preprint. Discussion started: 19 August 2022
c© Author(s) 2022. CC BY 4.0 License.



and monthly rainfall Navarro-Racines et al. (2020). This was carried out using the delta method (thin plate spline spatial in-

terpolation of anomalies) to bias correct 35 CMIP5 climate models to around 1-km spatial resolution. These products are of60

great value to those who need to model vegetation dynamics where temporal information is less critical than spatial variation.

Statistical methods, which lack the physical basis of RCMs, are often considered less ‘trust-worthy’ than other techniques, and

validating outputs is critical. Projects such as the VALUE framework (http://www.value-cost.eu/) has been set up to assess the

performance of downscaling methodologies, but the application is limited to Europe.

Recently, the application of Machine-learning (ML) and Deep learning (DL) techniques for downscaling has been growing65

in interest. The translation of image enhancement methodologies to improve spatial resolution (downscaling) of regional data

is now well established (Vandal et al., 2018; Sachindra et al., 2018; Chang et al., 2018; Baño-Medina et al., 2020; Ji et al., 2020;

Xu et al., 2020). These methodologies offer many of the benefits of traditional statistical methods (speed and low computational

complexity) but with the potential to emulate non-linear processes and complex physical and spatial relationships (Mansfield

et al., 2020). Convolutional neural networks, of interest because of their ability to capture spatial relationships, appear to have70

advantages over more traditional neural networks. Image super-resolution has been employed to enhance the spatial resolution

of a number of mostly atmospheric variables in weather and climate forecasting. ML techniques are particularly suited to

variables which are stochastic in nature and have features of a finer spatial scale, such as cloud cover and precipitation. These

models have also been shown to speed up forecasting requiring less time than RCM outputs (in the order of 12% )(Chang et al.,

2018).75

As with all statistical learning methods, neural network models require large, high-quality datasets to achieve high perfor-

mance. Even with the increasing availability of high-quality remote-sensing and data assimilated datasets, DL methods are not

infallible, and it is important to rigorously assess potential limitations or introduced bias when evaluating complex, ‘black-box’

style techniques. For example, DL models based on convolutional methods often demonstrate the ability to generalise well and

routinely outperform traditional dense neural network models. However, these methods are prone to overfitting (Xu et al., 2020)80

and performance and generalisability is likely to be somewhat data and model architecture specific. Demonstrating rigorous

performance and trust in ML methodologies is essential, especially where numerous bench-marking datasets are not available

(Baño-Medina et al., 2020, 2021). Additionally, identifying a complete set of metrics to assess performance and is a challenge,

and ensuring region specific characteristics are maintained may need to be taken into account. The geography of SEA may

present additional challenges to convolutional methods, akin to those found in dynamical downscaling approaches or possibly85

unique to the technique. Once these challenges are identified, more complex model architectures can be designed which target

key limitations ensuring that the iterative process of improvement is not random, and meets the individual requirements of the

region.

Here, the performance of a deep convolutional image super-resolution model is assessed in the context of spatial downscaling

for climate projections in Southeast Asia. Because of the limited bench-marking datasets available, the aim is to identify90

potential limitations of the model, any unwanted artefacts, and any region specific considerations. 2m surface temperature

is explored as a variable present in most model outputs with well understood interactions and is less stochastic in nature

compared to variables such as precipitation. Surface temperatures also have strong relationships to topographic features which
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is convenient for the analysis of generated temperature gradients. Selected CMIP5 model outputs are downscaled using ERA5

Reanalysis data as a target dataset, which simultaneously increases spatial resolution and aligns model output with current95

observational trends (bias correction). CMIP5 data was used as an input to the model so that both CORDEX and CMIP6

projections can be used as bench-marking datasets. We aim to highlight potential pitfalls in the approach by generating three

comparable datasets using autoencoders trained to isolate both the downscaling and bias correction functions of the model.

2 Proposed architecture

A deep 2D convolutional autoencoder constituting of fourteen layers was developed in this study (Figure 3). The model ar-100

chitecture is inspired by autoencoders applied to image super-resolution problems Johnson et al. (2016). The autoencoder is

near-symmetrical and consists of an encoder and a decoder. The function of the encoder is to extract structural features from a

series of images, which can be used to reconstruct an image. The convolutional encoder achieves this via a series of convolu-

tional and MaxPooling layers which decrease in size (dimensionality reduction), resulting in the generation of a small encoding

known as a ‘latent representation’. This representation of the input image is then passed to the decoder, which is trained to105

reconstruct an image from its latent representation. In reverse of the encoder, the decoder is capable of reconstructing an image

via a series of convolutional layers which increase in dimensionality, until the output matches that of the target (as well as

input) image size. In image reconstruction, this process is lossy, since the encoder disregards information which is considered

to be noise and unimportant for the reconstruction of an image.

In this study, the input and output images used in training can be from different models, and so the function is modified110

from image reconstruction. In the training phase for example, the autoencoder is trained using CMIP5 hindcast data as input

and high-resolution ERA5 Reanalysis data as the target. The autoencoder therefore learns to extract spatial patterns from

CMIP5 images which can be used to generate the corresponding ERA5 image. Critically, the CMIP5 data is not simply a ’low-

resolution version’ of ERA5 images. This means that the autoencoder may learn to ’translate’ between CMIP5 and ERA5,

‘correcting’ for model bias and systematic errors present in the CMIP5 dataset. This function of the autoencoder may present a115

more difficult challenge than the generation of fine structure from low resolution images, especially since the autoencoder was

originally conceived for image reconstruction. It is important to assess how well the autoencoder can achieve both downscaling

and correction of CMIP5 data, which is achieved here through a series of differently trained autoencoders.

In order to determine how downscaling and correction carried out by our proposed autoencoder affects the quality of the

generated results, three different autoencoder architectures are trained (Figure 1). Autoencoder A is trained to carry out cor-120

rection and downscaling simultaneously, Autoencoder B is trained to carry out the correction only, and Autoencoder C carries

out downscaling only. The three autoencoders are used to generate the following results as described in Figure 2:

Autoencoder (AE): Results generated using Autoencoder A. Correction and downscaling is carried out simultaneously by

a single autoencoder, using CMIP5 as an input dataset and ERA5 as a target.

Stacked (ST) Stacked models often carry out two functions separately, or a single function in a step-wise manner (eg.125

incremental increases in spatial resolution), which can result in an improvement in performance Vandal et al. (2018). Here,

4

https://doi.org/10.5194/egusphere-2022-234
Preprint. Discussion started: 19 August 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 1. Three autoencoders are trained using different datasets to isolate the different functions of the autoencoder. Autoencoder A is

trained to learn downscaling and correction simultaneously. Autoencoder B is trained to learn correction only. Autoencoder C is trained to

learn downscaling.

Figure 2. Downscaled outputs (AE, ST, RC) are generated using one or two of the trained autoencoders. AE: Autoencoder, generates

downscaled and corrected data using Autoencoder A. ST: Stacked model, utilises Autoencoders B and C to generate downscaled and corrected

data. RC: Reconstruction, mimics an image reconstruction experiment utilising Autoencoder C to generate downscaled only data.

the two functions of correction and downscaling are carried out by two Autoencoders (B and C) and both autoencoders are

applied in series to generate a dataset (ST). Since this approach uses two autoencoders in series, there is an effective doubling

of convolutional layers which may also result in an increase in performance. Autoencoder B is trained to convert between the

CMIP5 dataset and an artificially reduced resolution ERA5 dataset, carrying out a correction of the CMIP5 dataset, without130
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carrying out downscaling. To generate low-resolution ERA5 data, the ERA5 training dataset was first regridded to the CMIP5

coordinate grid, and then rescaled back to the original ERA5 coordinate grid using nearest-neighbour interpolation, resulting

in a loss of spatial information. Autoencoder C, is trained using the same low-resolution ERA5 dataset as an input, with the

native high resolution dataset as the target. Thus, Autoencoder C is trained to carry out image-enhancement (downscaling)

only. Since the result generated by Autoencoder B would be of low resolution, results generated by Autoencoder B and C in135

series are used as a comparison with other datasets.

Reconstruction (RC): Autoencoder C is trained using artificially generated low-resolution ERA5 data, with the original

higher resolution ERA5 data as the target dataset. Therefore, Autoencoder C does not learn to translate between CMIP5 and

ERA5 datasets, isolating the downscaling functionality. This mimics an image reconstruction experiment most closely, where

models are trained to reconstruct missing details in artificially degraded images. After training the model, the CMIP5 data used140

to generate a new downscaled dataset (RC).

The datasets generated from our three proposed models can be compared to assess a) the benefits of stacking and separating

the functionality and b) how the correction and downscaling functions of the autoencoder affect the projection data.

Autoencoders A, B and C are identical in architecture, to maintain comparability. This architecture is described in Figure 3

Model optimisation was carried out with some minor improvements in MSE, but were not significant for the aims of the study145

and complicate dataset comparisons unnecessarily.

Figure 3. Model architecture of the autoencoder used for Autoencoders A-C. Brackets denote (height, width, channels) in pixels. Kernel size

is (3,3) for 2D convolutional layers.

3 Experimental setup

3.1 Datasets

3.1.1 Dataset selection

Within the CMIP6 and CMIP5 deck of experiments, there are GCMs which are able to capture the seasonal and climatic patterns150

present in SEA better than others (Raghavan et al., 2018; Kamworapan and Surussavadee, 2017). Typically, performance is

evaluated via the models’ ability to capture historical trends, and large seasonal processes such as the monsoon (McSweeney
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et al., 2015). One set of models which have consistently performed well in the SEA region are those developed jointly by

CNRM-GAME (Centre National de Recherches Météorologiques—Groupe d’études de l’Atmosphère Météorologique) and

Cerfacs (Centre Européen de Recherche et de Formation Avancée) (Voldoire et al., 2019; Kamworapan and Surussavadee,155

2017). An analysis by Kamworapan et al (Kamworapan and Surussavadee, 2017, 2019) stated that CNRM-CM5-2 and CNRM-

CM5 were the top rated models for studying climate in the region, and rated these highest for modelling temperature values

within the CMIP5 deck of experiments. Fortunately, CNRM-CM5.1 (CMIP5) and CNRM-CM6-1 (CMIP6) data is available

publicly via the Copernicus data store, as is CORDEX regional downscaled data generated using the CNRM-CM5 model. A

cool bias has been reported for these models, however an improvement in performance from CMIP5 to CMIP6 has been noted160

due to improved modelling of the shortwave cloud radiative effect Ge et al. (2021). For this reason, data derived from CNRM-

CM5 experiments was used as the input for the models. The output of the downscaling was compared against CNRM-CM6

models, which have resolutions of around 100 km, although high resolution (HR) data is also available. CMIP6 datasets may

provide better training data in the future for downscaling using ERA5, but CMIP5 data was used to ensure a benchmarking

dataset was available. CORDEX outputs which are run using modified CNRM-CM5 are also included, since this is the best165

regional model available at resolutions exceeding 100 km, current CORDEX data is available at 25 km resolution (CNRM-

CERFACSS-CNRM-CM5). A complete set of experiments is not available for comparison however, CORDEX experiments

are only available for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5. Additionally, CMIP6 experiments

do not use RCPs, and report projections using the Shared Socioeconomic Pathways (SSPs). SSPs and RCPs are not equivalent,

as SSPs contain updated and more variable socio-economic pathways, but result in the same total radiative forcing by 2100.170

This means that some RCPs and SSPs can be compared, especially in the latter years of the projections. By utilising GCMs

and RCMs which use the same CNRM model as a base, it is hoped that regional biases and systematic errors are consistent

and easier to identify.

CORDEX simulations are constrained to a smaller region than that selected for downscaling in these experiments. This

is because RCMs for the SEA region are destabilised by the presence of the Tibetan Plateau at the north-western boundary.175

For this reason, a domain of 90E-145E and 15S-27N is available for CORDEX experiments. A larger domain is used for

autoencoder downscaling, to assess the effect and performance over the Tibetian Plateau and to include the islands of the

Philippines. For comparison with CORDEX, the results in this study are occasionally ’cropped’ to the CORDEX domain so

that they remain comparable.

ERA5 Reanalysis data is available hourly up to 2020 on a 30 km grid at hourly intervals. It utilises hindcast models,180

observational and remote sensing data and uses data assimilation to generate high resolution and highly accurate estimates

of past climate. Due to the limited observational data available in this region, ERA5 Reanalysis data was used as the high-

resolution target dataset for training.

A summary of the datasets used in this study is included in Table 1.
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Dataset Abbreviation Spatial Resolution Source

CNRM-CM5 CMIP5 1.4008◦× 1.40625◦ ( 150 km grid) (Voldoire et al., 2012)

ERA5 Reanalysis data ERA5 0.25◦× 0.25◦ ( 30 km grid) (Hersbach et al.)

CNRM-CM6-1-HR CMIP6 0.25◦× 0.25◦ (Voldoire, 2019)

SEACLID/CORDEX, CORDEX 25x 25 km grid (Juneng et al., 2016b; Ngo-Duc et al., 2017)

CNRM-CERFACSS-CNRM-CM5 (Cruz et al., 2017; Tangang et al., 2018)

Table 1. A table summarising the datasets used in this study. CMIP5 and CMIP6 is used for model training, CMIP6 and CORDEX datasets

are used for validation and bench-marking.

3.1.2 Data preprocessing185

Model training was carried out using CMIP5 and ERA5 Reanalysis data from 1990-01-01 to 2004-12-31, constituting 5,478

days of which an out-of-time validation set of 20% was removed. The year of 2005 (01-01-2005 - 12-31-2005) was excluded

from the training set and used as a test set, to evaluate the performance. We selected this data range as hindcast data was

available in this date range for all datatsets CMIP5, CMIP6, CORDEX and ERA5 experiments.

Climate data was converted from NetCDF to numpy arrays using python. This resembles a stack of grey-scale images,190

each with one channel. Due to the differences in projection and resolution, ERA5 and CMIP5 are provided with differing

spatial grids. To ensure that the numpy arrays generated from the climate data contained information in each pixel representing

the same geographical area, CMIP5 data was first regridded to match the regular 30 km grid of ERA5 Reanalysis. CMIP5

data was regridded and upsampled using nearest-neighbour interpolation. Nearest-neighbour interpolation was used over other

interpolation methods which could smooth values, resulting in the loss of local minimas and maximas. Regridding was carried195

out using the xESMF package in Python. The ERA5 data was downloaded as hourly data, and daily means were generated

using NCO netCDF operators using bash in terminal.

Scaling, normalisation or standardisation of input data is commonly carried out to improve the training of ML models.

Although commonplace, this is generally beneficial when using a range of datasets with large variations in absolute values. All

datasets were normalised using the same min-max scaling factor, which covers the full temperature range of both the CMIP5200

projections and ERA5 target datasets. Temperature data was normalised to be between 0-1 within a range of -50 to 50 ◦C. This

encompasses the lower and upper range of all datasets used, however, it also constraints the majority of the datapoints to a

narrower range following normalisation.

3.2 Dataset analysis

An evaluation of the training datasets and benchmarking datasets was carried out to determine bias and to gauge acceptable205

limits for error. Historical data from each of the datasets was compared in the region between the dates of 01-01-2000 and 01-
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01-2006 (Figure 4). Where CORDEX experiments are included for comparison, results are cropped to the CORDEX region.

Surface temperatures averaged over the region appear to be very similar for CMIP5 and ERA5 datasets. CMIP5 has a narrowly

larger range of average daily temperature values, tending towards more cooler temperatures in the cooler months. ERA5

Reanalysis gives warmer yearly-averaged surface temperatures than CMIP5, and this difference is increased over the full region210

used in these experiments, suggesting that stronger than average differences exist between CMIP5 and ERA5 in the northerly

regions missing from the CORDEX experiments. The similarity in the training datasets may increase the performance of the

model, as the correction element will be less significant. CMIP6 is significantly cooler, with the mean, inter-quartile range and

range shifted to by around 1.7 ◦C below that of both ERA5 and CMIP5. A cold bias has been observed previously for both

CMIP5 and 6, but it appears more exaggerated for CMIP6 (Voldoire et al., 2019) despite reported improvements. Additionally,215

there appears to be a seasonal dip in temperatures observed in the OCT-NOV-DEC months for CMIP6, not present in other

datasets, a seasonal trend more characteristic of mainland Southeast Asia than the region as a whole. A slight cold bias was

observed for the CORDEX dataset, the inter-quartile range for temperatures appears to be very similar. The CORDEX data

suggests that temperature ranges do not increase as the result of increased resolution, as do the similarities in the boxplots of

all datasets.220

Figure 4. Daily surface temperature averaged over the SEA region defined by CORDEX between 01-01-2000 and 31-01-2005 (left). Average

values are displayed only for clarity. The daily mean, interquartile range and range is shown as boxplots (right).

There is a clear distinction between surface temperatures on land and sea. With surface temperatures on land tending to be

cooler and with larger seasonal variation than temperatures over sea (Appendix: Figure A1). Land constitutes only around 22%

of the area of the region, and so ocean temperatures are likely to dominate averaged trends observed over the region. Both

CMIP6 and CORDEX datasets show cooler seasonal cycles than CMIP5 and ERA5 datasets on land. CORDEX however, has

much warmer seas which appear more similar to the CMIP5 and ERA5 datasets, with land values more closely resembling that225

of CMIP6.
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3.3 Model training and evaluation metrics

Data from the period 31-12-2004 to 01-01-2006 was used as a test set to analyse the performance of all three of our proposed

models. CMIP5 data was used as an input to generate results AE, ST and RC. These are then compared with ERA5 data.

Training was carried out for 500 epochs but early-stopping was triggered in all cases around 200 epochs. The validation loss230

for all models plateaued around 2− 4× 10−4K2 epochs.

Mean square error (MSE) was used as the primary metric for both the evaluation of model performance. It was also used

for model training over other loss functions which have been optimised to give more visually pleasing results in image resolu-

tion applications (Johnson et al., 2016) for simplicity. MSE provides the clearest indicators of differences between generated

model data and is the easiest to interpret. Other metrics commonly employed for image analysis such as structural similarity235

index (SSIM) were also used but results were either complimentary to MSE or less intuitive to interpret. We also do a visual

observation of the final generated temperature maps to find patterns and general observations.

4 Results

Data generated by the autoencoders showed increases in the number of spatial features and sharpness of spatial features present

in the climate data. The improvement of temperature gradients representing topographic features and the reduction of pixels240

which spread across coastline boundaries can be observed when comparing the the predicted model outputs (AE, ST and RC) to

the lower CMIP5 model input, and the ERA5 data (Figure 5). AE and ST appear to have higher resolution around topographic

features as compared to CMIP5 and RC, and were closer to ERA5. RC retained features present in CMIP5 but not ERA5,

such as the cooler band which appears in the Philippine Sea (Figure 5). RC shows significant enhancement in terms of spatial

resolution, indicating that the translation function of the autoencoders in AE and ST are not essential for downscaling. Other245

forms of interpolation do not perform nearly as well in resolving coastal regions especially in regards to the ’hard edges’ of

land-sea borders.

4.1 Autoencoder performance

The performance of the autoencoders was assessed by comparing the output datasets AE, ST and RC against the ERA5 dataset

for the year of 2005 (Table 2). MSE values were calculated by averaging daily differences over the region, and then averaging250

over the year to give a single value. Standard deviation of the MSE is reported (σ). Additionally, the differences between the

benchmarking datasets and ERA5 were calculated and included for comparison. MSE was used over other measures such as

mean absolute error to attempt to increase model performance with regards to outliers and extremes. The MSE is far higher for

CMIP5 and CMIP6 than the autoencoder generated outputs, with ST and AE performing the best. Only CORDEX improves

on RC, although the geographical region for CORDEX is smaller and this may reflect the improved predictions owing to the255

absence of the Tibetan plateau. However, the autoencoder generated results report reduced differences between daily average

maximum and minimum temperature values. This contraction in temperature range is an important metric and a contraction
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Figure 5. A single day taken from the test set, showing outputs from each model AE, ST and RC, with ERA5, CMIP5, CORDEX as

comparisons. The ’pixels’ of the CMIP5 input are clearly visible, overlapping coastal boundaries. Visually, the output of the autoencoders

(AE, ST, RC) appear extremely similar, with AE more closely resembling that of ERA5. The output from RC appears to be more similar to

that of the CMIP5 input but with significant increases in spatial resolution. The CORDEX region is more constrained than the outputs of this

model, and so the north and east sections are blank. Coastal boundaries (black line) are overlayed, and are not present in the input or output

images.

in these values may not be desirable. This effect is not reflected in low values of MSE which appear to suggest the model is

performing well. RC narrowly overestimates the temperature range. This suggests that the autoencoder translation function

present in AE and ST results in a reduction in the range of predicted temperature values. The difference in the average daily260

temperature maximum is more pronounced than the minimum for all models, this may be because cooler temperatures are

found in regions of higher topography where climate is more stable. RC is closest for average daily maximum to ERA5,

underestimating the daily average maximum by 1K.

Error over the region is not strongly temporally dependent, although larger errors are reported in the Spring months (March,

April, May: Figure 6) The error is localised to mainland China, but approaches zero within the islands of the Maritime Conti-265

nent. April heatwaves over mainland SEA were observed in 2005, likely exacerbated by El Nin˜o/Southern Oscillation (ENSO)

phenomenon Thirumalai et al. (2017), but this does not result in significantly increased error for mainland SEA during the
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Model MSE / K2 σ / K2 Av. Daily Max / K Av. Daily Min / K Difference / K

ERA5 0.00 0.00 301.51956 291.05258 10.46698

ST 2.81 4.50 300.2947 292.96204 7.33266

AE 2.85 4.74 300.42657 292.68814 7.73843

CORDEX* 3.41 6.09 301.7253 294.37817 7.34713

RC 6.10 10.85 301.71252 290.02182 11.6907

CMIP5 6.86 13.93 301.74002 289.66425 12.07577

CMIP6 9.81 18.37 300.5624 288.33856 12.22384

Table 2. Model performance listed in order of increasing mean square error (MSE) calculated between model outputs (in bold) and ERA5

for the period 01-01-2005 to 31-01-2005. Benchmarking and training datasets are also included for comparison. The standard error of the

mean is also given (σ). The average daily temperature maximum and minimum are given, as are the differences between these values, as

an indication of the models ability to replicate the range of temperature vales. * The geographical region for CORDEX is smaller than

geographical area covered by the other models and so performance may appear to be better.

spring season as might be expected. Out of the years used in the training dataset, April heatwaves in SEA were observed for

1992, 1995, 1998, 2001, 2003 and 2004.
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Figure 6. MSE averaged over four seasons, Winter (December January Feb), Spring (March, April, May), Summer (June, July, August),

Autumn (September, October, November).

4.1.1 Spatial resolution270

Regional downscaling is achieved in order to obtain more realistic temperature profiles over complex topography and around

coastlines. Since the autoencoder output is not determined by any physical laws, it is important to determine if increases in

resolution are realistic. Autoencoder outputs increase spatial resolution significantly with respect to the CMIP5 input, and

temperature gradients appear to strongly resemble the ERA5 dataset for AE and ST (Figure 7). Temperature profiles correlate

with elevation and land-sea borders (Figure 7, middle panel) and higher resolution datasets (ERA5) approximate boundaries275

and topography at higher resolution. Land-ocean boundaries are better represented as are the presence of small islands for AE

and ST which overlap the profile of ERA5 almost exactly, especially over mountainous regions. RC is an improvement on

CMIP5, and goes someway to improve land-sea boundaries. Clear differences between RC and AE/ST are observed where

mountainous regions are present. Mountainous regions are accompanied by large changes in surface temperature over a short

spatial scale, which may suit ML methods due to the presence of ’static’ topographic features which form repeated structures in280

the data. AE and ST perform extremely well over mountain ranges. CMIP5 and RC underestimates the surface temperatures in
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regions around Kalimantan in Borneo and overestimates the temperatures of West Papua. This clearly indicates the importance

of translation for spatial downscaling, and the significant improvements which are achieved over areas with large changes in

topography (mountains).

Figure 7. The spatial features of the surface temperatures correlate strongly with topographic features. Here a line is drawn across a number

of islands in the region at latitude -1.2 (Top). The elevation, where ocean (blue) is set to 0 elevation can be shown to correlate strongly with

the temperature profiles (middle and lower figure). The lower figure shows the surface temperature across the longitude with tick marks

indicating data points. AE correlates strongly with the ERA5 target but the RC follows the low resolution CMIP5, which only loosely

indicates topographic variations in temperature.
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4.1.2 Temporal Resolution285

The autoencoder is optimised for image resolution applications and temporal information is not provided to the autoencoder.

The autoencoder can process images in any order and so temporal information my be lost. In order to determine how seasonal

temperature cycles are affected by downscaling, 12 locations around SEA representing regions of interest are compared. These

locations are representative of a few of the micro climates present within the region (Cruz et al., 2017). The locations are listed

in Figure 8 and Table 3.290

Despite the absence of spatial information provided to the autoencoder, seasonal cycles within the downscaled results remain

realistic in all micro-climates of SEA, especially where there is good agreement for CMIP5 and ERA5 (Figure 9). Where

CMIP5 and ERA5 diverge, AE and ST resemble ERA5 more closely, whereas RC retains the temperature profile of CMIP5

(Figure 9, d,h,j,k). For this reason, it is not likely that the autoencoder is introducing a strong regional bias or introducing

unrealistic temporal temperature cycles.295

Despite the retention of seasonal patterns and trends, it is clear that temperature ranges are modified following downscaling

(Table 2). Critically, the range and difference between daily average max and min are more constrained for ST, AE. The

contraction in temperature values observed in regionally averaged data (Table 2) is not due to a localised error, but present over

the entire region. In Figure 9, a contraction of daily temperature values result in the smoothing of seasonal profiles for AE and

ST, which is not observed for ERA5. Artificially smoothing temperature extremes, is not desirable as the number and duration300

of hotter days in a location are important metrics to assess climate risk. The contraction in temperature range for AE and ST

for the downscaled models is significant, and beyond that which could be considered realistic when compared to those of other

datasets. This is a significant limitation of AE and ST, and a trade off between temporal and spatial resolution is present when

selecting between autoencoders which carry out translation. Temperature ranges for RC, which does not attempt to correct the

temperature profiles to match ERA5 are more realistic and match the daily fluctuations of CMIP5 (Figure 9)305
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Letter Latitude Longitude Location

a 24.797037 102.833037 Kunming Yunnan

b 30.573978 114.302702 Wuhan Hubei

c 26.061373 137.804832 Philipine Sea North

d 13.681586 100.494526 Bangkok

e 10.823328 106.648856 Ho Chi Minh City

f 14.584877 121.074389 Manila

g 1.316031 103.82534 Singapore

h -1.180855 112.569417 Central Kalimantan

i 3.176664 142.27385 Philipine Sea South

j -3.267858 103.866476 South Sumartra

k -2.172308 120.336446 Sulawesi

l -6.704243 140.995719 Papua New Guinea
Table 3. The latitude and longitude, and location of points selected within the SEA region.

Figure 8. 12 regions within the region, representing the different micro-climates in the region, and major cities likely to be significantly

affected by climate change.
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Figure 9. Selected locations within the SEA region, showing the CMIP5, ERA5, AE, ST and RC outputs between 01-01-2005 to 31-12-2005.

Note: Each row has different y-axis range
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4.2 Downscaling CMIP5 climate projections

CMIP5 climate projections for RCP 2.6 and RCP 4.5 are downscaled using the trained autoencoders and compared to the

CMIP5 and CMIP6 datsets. The autoencoders are clearly able to predict temperature values outside those present in the training

set. Yearly averages are modified significantly for both RCPs by AE and ST, however RC retains the temperature profile of

CMIP5 data (Figure 10). This demonstrates the significant modifying effect of the ’translation’ function present in AE and ST310

datasets. The surface temperatures are consistently warmer for both AE and ST in the early years for both projections, following

the observed trends for the ERA5 training set. Notably, AE and ST are not simply offset from the CMIP5 and RC projections

by a constant value. For RCP4.5 this results in a reduced gradient of warming, with regional averaged temperatures eventually

approximating the same regional average surface temperature as the other datasets by 2100. Why temperature gradients are

modified is not clear, however this suggests the autoencoders are predicting temperatures using non-linear relationships.315

Figure 10. Yearly-averaged daily surface temperatures over the SEA region for all datasets for RCP 2.6 and RCP 4.5. Vertical dotted line

represents transition from training data to climate projections of daily surface temperatures. Yearly average values are presented only to

maintain clarity as the range of values within these averages are significant and overlap considerably. *CMIP6 data shown are for SSP126

and SSP245 which are not equivalent to the RCPs shown.

Mapping the temperature differences between the downscaled outputs (AE, ST, RC) and the equivalent CMIP5 projections

was used to indicate where significant changes to the input CMIP5 datasets had been introduced by the autoencoder downscal-

ing (Figure 11). These results indicated that significant differences were present in mainland Asia, and warmer temperatures

18

https://doi.org/10.5194/egusphere-2022-234
Preprint. Discussion started: 19 August 2022
c© Author(s) 2022. CC BY 4.0 License.



were introduced for land than over the oceans. The effect of the higher resolution around islands can be seen by the cooling

of temperatures in areas of higher topography, for example, the central part of New Guinea. ’Residues’ due to the difference320

between gradients generated by the finer resolution downscaled outputs and the outputs from the coarser pixels of CMIP5

experiments can also be observed. This creates ’hotspots’ at the edges of these larger pixels, which means that areas with finer

topographic detail appear to have greater differences from the CMIP5 datasets. This maybe why the ocean is appears to have

little change from the CMIP5 input, as there are no topographic features or strong changes over small spatial scales.

Figure 11. The difference between average daily temperatures of the downscaled outputs (AE, ST and RC) and the input dataset, CMIP5.

Results shown are for differences which occur between the years of 2060 and 2100.

4.2.1 RCP 2.6: Are these changes realistic?325

RCP 2.6, which represents the RCP with the smallest forcing from greenhouse gasses in the CMIP5 experiments, is the set

with temperature values closest to that of the training set. Currently, regional projections for CORDEX are not available for

comparison, only CMIP6(SSP125) is available from CMIP6 experiments. The SSP126 scenario of CMIP6 is not an ideal

surrogate for CORDEX under RCP 2.6 since it is represents a ’best-case’ scenario reaching 2.6 W/m2 by 2100 but at a much

slower trajectory (Figure 12). SSP125 reaches equivalent forcing to RCP2.5 past 2060, and so projections in this date range330

are used for comparison.
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Temperature profiles: AE, ST and RC all display seasonal cycles very similar to that of both CMIP5 and CMIP6 and

no regional bias could be determined. Despite introducing more dynamic gradients in temperature on a spatial scale, daily

temperature ranges are again reduced. This means that the smoothing effect of AE and ST is carried forward into the projections.
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Figure 12. Grid locations compared for the input dataset CMIP5, the autoencoder downscaled output AE and the benchmarking dataset

CMIP6 for the year 2090 to 2091. AE sits well between projections made for CMIP5 and CMIP6, however the smoothing effect is also

present, reducing daily temperature fluctuations.
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4.2.2 RCP4.5: Are warming trends realistic?335

Downscaled predictions have a reduced rate of warming as compared to the CMIP5 equivalents. The reduction in warming over

time means that the differences between the scenarios RCP 2.6 and RCP 4.5 in terms of regional average temperature increase

are smaller for the downscaled results. It is not clear why the autoencoder results have a shallower gradient of warming, and if

these results are realistic.

Warming due to climate change in the SEA region is not evenly distributed and will be more pronounced in some regions.340

Comparing regional warming can be used to indicate if the autoencoders are able to project warming correctly. Since the

absolute differences in temperature for the autoencoder generated data, RCP and SSP scenarios are dissimilar, qualitative

changes can only be compared. As expected, the temperature increase experienced under RCP4.5 or SSP245 as compared

to RCP2.6 or SSP126 is not uniform over the region but localised to specific regions (Figure 13). For CMIP6 projections,

the difference between scenarios results in a disproportionate increase in average temperature over land, especially within the345

greater land mass of central China. Additionally, warming at the ocean surface is strongest towards the centre of the Phillipine

Sea, and strong changes occur around the Tibetian Plateau which extends into lowland China. A similar warming profile is

observed for CMIP5 although less warming is observed over the sea, and reduced warming over landmasses is observed, but

this is due to differences in compared scenarios. The downscaled result (Figure 13, AE) does not mirror the changes observed

for the other datasets. AE results indicate a warming on the Eastern coast of mainland China which is not present in CMIP6,350

and significantly reduced in the CMIP5 projections. Additionally, ocean temperatures are cooler away from land masses and

unlike the CMIP5 and CMIP6 projections, are cooler towards the centre of the Philippine Sea. Artefacts, such as the ’warm

border’ present in the lower South-Western region of AE indicate that the autoencoder may be failing to forecast realistic

temperatures where features (such as islands or landmasses) are absent. This is why temperatures over the ocean may not

change considerably in the downscaled outputs as the autoencoder cannot map spatial patterns where no strong features are355

present. This is also why islands appear to have a warm outline, which is not present in other projections. This disparity

may indicate that this approach may bias warming to regions with topographic features, especially when datasets are limited.

This may also explain the plateau observed in the RCP projections, which may be caused by the lack of ocean warming in

downscaled results, which constitutes the greatest area of the region. This observed ’patchiness’ is not immediately clear from

other comparisons and could easily be overlooked since the absolute temperature differences are small and do not contrast360

sharply in the downscaled outputs.
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Figure 13. The difference between average surface temperatures between 2080-2101 for RCP 2.6 and RCP 4.5 (CMIP5 and AE) and SSP126

and SSP245 (CMIP6). Maps are enhanced to maximise contrast between temperature changes within the region in order to assess differences

in spatial distributions of temperature change only and colours do not represent quantitative differences in temperature which can be inter-

compared.

4.2.3 RCP 4.5: Comparison with CORDEX projections

The CORDEX outputs use the same climate model and initialisation parameters as the CMIP5 dataset. The regional average

temperatures for CORDEX follow almost the same warming profile as the CMIP5 dataset, features in the CMIP5 are mirrored

by features in the CORDEX dataset. CORDEX is cooler over the region, the difference between CORDEX and CMIP5 appears365

to be constant over the entire temporal range (Figure 14, a). As with RCP 2.5 the RC downscaled data replicates the yearly

average temperatures of CMIP5 (data not shown for clarity), whereas AE and ST resemble CMIP5 more in the early years but

have the shallowest rate of warming, becoming very similar to the CORDEX outputs in the final 20-30 years. Daily variability

in temperatures for the downscaled outputs AE and ST is reduced, as with other studies (Figure 14, b). Daily variability in

surface temperatures is expected to increase following downscaling from CMIP5, due to the addition of cooler temperatures at370

higher elevation. This is observed when comparing the standard deviation in daily average surface temperatures of CMIP5 and

CORDEX, as variability becomes narrowly larger. For AE, there is a clear contraction of the standard deviation, and therefore

the range of temperature values in the downscaled output. Daily variability in surface temperature vales for CMIP5, CMIP6

and CORDEX is roughly equivalent, so the contraction of AE and ST is likely to be due to a limitation in the autoencoder

performance and an unrealistic result.375
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Figure 14. a. Yearly-averaged daily surface temperature for RCP 4.5 and SSP245, averaged over the region defined by the CORDEX

experiments. b. Daily temperature variability, presented as standard deviations from daily means.

The spatial features in the AE and ST downscaled outputs appear as well resolved as CORDEX and CMIP6-HR experiments,

this is clear around islands, coastlines and mountinous regions. AE and ST are a strong approximation of CORDEX projections

(Figure 15), especially in the latter years and spatial features are very similar. There is a step difference between land and sea

surface temperatures in the CORDEX datasets and land features appear well resolved against the sea because of this. These

differences are not so resolved in the case of AE and ST, but this may be an artefact of dynamic modelling, and may not be380

realistic.
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Figure 15. Surface temperatures at 01-07-2099 for CORDEX, AE and CMIP5 for the whole region (top row) and zoomed in (bottom row).

Top and bottom row use different temperature scales. This timepoint was selected as regionally averaged surface temperatures were most

different at this point for this year.

5 Conclusions

These results show that a deep convolutional autoencoder architecture, utilising limited datasets, is capable of generating

realistic high-resolution climate projections at low computational cost. The images are scaled up by a factor > 5, and ’corrected’

based on the target observational data. The three approaches employed (AE, ST, RC) demonstrate that despite the similarities385

in regional average temperatures, the autoencoder ’translation’ function of CMIP5 to ERA5-like data can significantly modify

the model output and subsequent projections. The translation has the benefit of increasing spatial resolution significantly, and

ensuring that projections follow current observational trends. Critically however, the translation results in a ’dampening’ of

temperature highs and lows which has the effect of artificially stabilising the climate beyond that which could be considered

realistic. This is likely due to an inherent limitation of the autoencoder, which is reliant on the identification of reoccurring390

spatial patterns which can be used to generate ’patches’ of higher resolution information. This results in a model with high

generalisabilty, but this comes at the cost of temporal resolution. AE and ST behaved similarly and ’stacking’ did not lead to

any significant improvements despite the doubling of ML layers and separation of functions. Omitting the ’translation’ element

(RC), temporal cycles are maintained and a moderate increase in spatial resolution is achieved. The inclusion of additional

variables such as topography and other atmospheric variables may reduce the magnitude of this dampening effect for AE395

and ST, but may not eradicate this issue completely. The generation of low probability events, especially ones of an apparent
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stochastic nature will require a new approach to model accurately, however models which accurately predict time series data

are also established. The apparent patchiness in comparing different scenarios also hints at another limitation of this technique.

Models perform extremely well in areas with strong topographic features, however, in featureless regions such as large expanses

of ocean, model performance is likely to be less reliable. This is because convolutional methods rely on the presence of structure400

and pattern in a ’image’. The models inability to increase the oceanic surface temperatures away from coastlines can be can be

seen as ’borders’ which appear around islands when comparing different projections. This effect is not immediately obvious in

the downscaled data, and could be overlooked, especially as there is large variability in oceanic temperatures for benchmarking

datasets. The patchiness of auto encoder outputs suggest that there may be issues with teleconnection and the maintaining

of seasonal regional temperature variations, however seasonal cycles in the region seem to be well maintained. Once issues405

with temperature anomalies can be rectified, studies which demonstrate that mesoscale atmospheric processes are maintained

should be employed. The frequency of April heatwaves, corresponding to El Nino events could be used in the SEA region.

No strategy was identified to eradicate the issue of temperature smoothing by optimising or adding components to the

model architecture, and only minor improvements to MSE could be achieved with model optimisation. This suggests that the

performance is limited by the features which could be extracted from the training datasets. Halving the date range, and therefore410

the amount of training data, did not considerably impact the model performance either, suggesting that the model training set

was adequate. For this reason, other variables will need to be added to increase performance. Decreasing the ’squeeze’ of

the autoencoder by reducing the number of max-pooling layers did not improve results. Since the initial CMIP5 dataset is

upscaled, the compression of the image using max-pooling layers results in almost no loss of information. This suggests that

the encoder function is the more critical component of the autoencoder. However, removing the decoder element results in a415

large reduction in performance, which is due to the Add layers, which ensure that larger spatial features are carried forward.

These studies suggest that the performance cannot be optimised further without adding additional co-variants, or adding new

model architectures. Additionally, new cost-functions which penalise reductions in the spread of temperature values might

improve training.

Regions which are traditionally difficult to model using RCMs appear to still provide some difficulty for the autoencoder,420

although uncertainty in this region is high within GCM and RCM models (Gu et al., 2018). Because of the reduction in

temperature extremes, the cooler region around the Tibetian plateau appears to be poorly represented. This is a region where

additional data (topographic information, atmospheric variables) may considerably improve the model performance and a

region where autoencoders may excel due to the presence of strong highly-resolved static features (topography).

Since ML techniques are inherently an emulation of climate, it is important that ‘black-box’ models are not relied on425

and simple metrics are not used to demonstrate performance. Since there is no guarantee that physical constraints present

in numerical models are maintained following downscaling using ML, some checks are required to ensure that downscaled

projections are accurate. It is likely that hybrid approaches for projecting future climate are required, to maximise the benefits

of ML approaches whilst forcing model outputs to respect a number of physical constraints (Barbier et al., 2021; Willard et al.,

2020; Beucler et al., 2019). Despite the issues highlighted in this paper, clear and established methodologies are available which430

could potentially mitigate these issues. A number of ML techniques excel in time-series forecasting and climate projection,
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and the addition of one or two more co-variables would not impact computational time considerably and likely lead to large

improvements in performance. Treating issues such as patchiness and the poor performance in ’featureless’ ocean regions

should be addressed too, as convolutional methods may not be able to solve this problem without interfacing with another

methodology.435

With these observations in mind, the next stages for developing a model for SEA will take the following steps:

– Addition of covariants: Simply adding more covariants such as as topography or additional atmospheric variables to

generate surface temperature may increase issues with patchiness and temporal resolution but may not remove them

completely. Identifying a minimum set of covariants will be necessary to maintain low computational load. Building on

an image reconstruction approach (RC) may result in the best temporally resolved and realistic output.440

– Methodologies to increase precision over the ocean Featureless areas perform less well, and the autoencoder does

not ’correct’ these areas. Identifying methodologies to ensure that corrections over the oceans are carried out, and that

patchiness is removed will improve regional average results.

– Identify methodologies to improve temporal resolution: It is critical to maintain daily temperature ranges, including

the frequency of highs and lows. Many ML methodologies have been developed to model time series data, and to445

identify anomalous events in time series data, but these will need to be adapted to become generative. Identify methods

for demonstrating that teleconnection is maintained It is important that downscaled climate projections still maintain

relationships with other climatic processes in GCMs. This builds confidence that the downscaled projections are realistic.

– Increase the number of scenarios In this study the aim is to generate models which emulate climate, for applied

modelling. For this reason, the results may be of less interest for those interested in climatic processes and more of450

interest for those who which to use climate data. In order to increase the utility of this model, strategies to increase the

flexibility or number of scenarios available at higher resolution should be developed.
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Appendix A: Appendix: Land vs Sea470

Figure A1. Daily surface temperature averaged over the region. Seasonal temperature cycles are more pronounced on land (left) than in

the sea (middle figure). CMIP6 values are cooler in both land and sea values in comparison to ERA5 and CMIP5 (right figure). CORDEX

temperature values are similar in the ocean to ERA5 and CMIP5 in the sea, but are far cooler on land.

Appendix B: Appendix: Singapore at RCP 2.6

GCMs are able to generate high temperature predictions caused by physical phenomenon, however ML methods using limited

datasets are capable only of generalising, and therefore project a more stable climate. This can be seen in Figure B1) where

the stable climate of Singapore is used as an example. ERA5 and CMIP5 have very similar temperature profiles, but dramatic

changes in temperature of >1 ◦C which are not present in both datasets simultaneously are removed by AE. This property475
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of the autoencoder artificially stabilises the climate over the entire region whilst maintaining a statistically likely temperature

profile.

Figure B1. Top row: CMIP5, AE and ERA5 gridded outputs around Singapore, location used to generate lower plot shown as red dot in top

left figure. Bottom row: Daily surface temperatures for Singapore between 01-01-2005 to 31-12-2005.

Appendix C: Appendix: China resolution

Mainland china appears to be a region where large changes occur following downscaling and a region which is problematic

for traditional downscaling methods. This is due to the complex topography and dramatic increases in altitude present towards480

the north west of the region. Figure C1 shows how downscaling can generate extreme temperature differences around steep
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topography which is absent from the CMIP5 experiments. Kunming, Yunnan is surrounded by rugged topographic features and

bodies of water which effect local surface temperature gradients, and capturing this information is of high utility for decision

makers. However, introducing these temperature gradients can result in significant changes in the projected temperature for

individual points on the map. Here, the local temperature for Yunan is increased by almost 4 ◦C by AE and ST by the addition485

of complex gradients.

Figure C1. Point a (see Figure 9) located within mainland China where larger differences are recorded between CMIP5 and downscaled

outputs. Top row show outputs from CMIP5, AE and RC experiments for the day of 01-09-2099. Lower panel shows the seasonal temperature

cylces for the period 01-01-2099 to 01-01-2101. MIGHT BE COOL TO ADD TOPOGRAPHIC LINES AS OVERLAYS TO TOP SECTION
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Appendix D: Appendix: Bangkok

Increase in spatial resolution: Figure D1 demonstrates the utility of auto-encoder down scaling to identify climatic features

not present in CMIP5 forcasts. Bangkok exists in a region of variable topography and is often hotter than the surrounding

mountainous areas. The ’hot spot’ present around Bangkok, a populous low-lying alluvial region where the Chao Phraya River490

meets the sea is likely to be strongly affected by climate change and changes in surface temperature. The absence of this spatial

information in the CMIP5 projections could result in an underestimate of surface temperatures due to the presence of regions

of high topography either side of the city, Additionally, Bangkok exists in the nexus between four large pixels in the CMIP5

dataset so assigning a temperature value to this point is difficult with only CMIP5 data available. The CMIP6 dataset is from the

CNRM-CM6-1-HR experiments, which is one of the few higher resolution CMIP6 experiments, so has finer spatial resolution495

not present in the majority of CMIP6 experiments. Temperature gradients related to the topographic features are resolved in

both the CMIP6 and downscaled outputs (AE, ST > RC) and follow similar spatial patterns, indicating that the generated

temperature gradient is realistic. Figure D1 also demonstrates the high degree of variability in projected temperatures for areas

such as this. Large temperature differences approaching 10 K are present at the end of 2099 where AE and SSP126 are far

warmer than the CMIP5 predictions. Daily temperatures are more stable with the AE output, with the daily fluctuations reduced500

in range as compared to CMIP5 and CMIP6126. This could be problematic since the frequency and magnitude of temperature

highs are important measures. Reducing the number of hot days artificially could result in misleading climate projections.
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Figure D1. Top row: Maps of temperature distributions around Bangkok, Thailand for 01-01-2080 (date marked on bottom row with red

dot). This date is illustrative of a day in which the datasets are disimilar. Bottom row: Temperature profiles for the year 2080 under RCP 2.6

(CMIP5 and AE) and SSP126 (CMIP6).
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