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The most efficient binaural acoustic modeling systems use a multi-tap delay to generate
accurately modeled early reflections, combined with a feedback delay network that produces
generic late reverberation. We present a method of binaural acoustic simulation that uses one
feedback delay network to simultaneously model both first-order reflections and late reverber-
ation. The advantages are simplicity and efficiency. We compare the proposed method against
the existing method of modeling binaural early reflections using a multi-tap delay line. Mea-
surements of ISO standard evaluators including interaural correlation coefficient, decay time,
clarity, definition, and center time, indicate that the proposed method achieves comparable
level of accuracy as less-efficient existing methods. This method is implemented as an i0S
application, and is able to auralize input signal directly without convolution and update in real

time.

0 INTRODUCTION

The widespread adoption of acoustic modeling in con-
texts such as 3D gaming and virtual reality simulation is
hindered by the complexity of the implementation. There
exists a great variety of methods for acoustic modeling of
virtual spaces, ranging from computationally intensive and
very accurate to efficient rough approximations. The goal
of the method we present here is to improve on the effi-
ciency and simplicity of the most efficient methods with
minimal loss of accuracy.

The most accurate binaural reproduction of the acoustics
of a real room is obtained by convolution of a dry input
signal with the recorded binaural room impulse response
(BRIR). Obviously this method is limited to rooms that
exist physically, and of which we can actually record the
BRIR. The recorded BRIR depends on listener and source
positions, as well as the room shape and placement of ob-
jects and materials. It is not possible to record and store
BRIRs for all possible combinations of these parameters.
Because of these limitations, acoustic modeling is an at-
tractive alternative.

Most acoustic modeling methods fall under one of two
categories of algorithms, Numerical Acoustics (NA) and
Geometrical Acoustics (GA).

Numerical acoustics comprises various analytical ap-
proaches to solving the wave equation. The main benefit
of NA methods is that they can account for wave phenom-

ena such as interference and diffraction. However, because
they are computationally intensive, it is not yet possible to
solve the wave equation for the entire duration of the RIR
across all audible frequency bands [1].

Unlike numerical acoustics, geometric acoustics based
approaches assume that sound waves propagate as rays.
Many of these techniques are adapted from the fields of
optics and computer graphics. One of the most widely used
geometrical acoustics methods is the Image Source Method
(ISM) [2], where, upon contact with a flat surface, we as-
sume that the reflection of sound waves is perfectly specu-
lar. Traditional GA methods alone are known to be unable
to model the diffraction phenomena that are more promi-
nent in the lower frequency bands where the wavelength of
sound exceeds the dimensions of large objects in the room
[3]. However, GA methods are able to simulate many other
important perceptual qualities and are often more efficient
than NA methods. It is possible to combine GA and NA
methods together, using the more accurate NA model at
low frequencies where complex wave effects are prominent
and the GA model in the higher frequency ranges. A typi-
cal strategy is to apply a NA method to model the acoustics
below the Schroeder frequency, which is around 50Hz for a
typical concert hall. Above that frequency, modes of reso-
nance become so dense that it is more appropriate to model
them as stochastic processes using GA methods [4].

Applications of both categories of reverberation algo-
rithms include acoustic simulation for training simulations,
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music recordings and computer games. Since there is a
trade-off between accuracy and computational complex-
ity, the appropriate choice of method for simulating room
acoustics depends on the specific requirements of each ap-
plication.

The method we propose here falls under the category of
GA methods. It combines the Acoustic Rendering Equa-
tion (ARE) [5] and a Feedback Delay Network (FDN) [6]
with a bank of head related transfer function filters (HRTF)
[7] and a bank of interaural time difference (ITD) delay
lines to simulate binaural room acoustics in real time.

1 RELATED WORK

Many acoustic modeling systems work by pre-
computing impulse responses offline and caching them.
This paper focuses on methods that are efficient enough to
update in realtime without caching a database of precom-
puted impulse responses.

Several GA approaches allow modeling parameters to
update in real time by combining a detailed early reflec-
tions with a generic reverb structure that produces diffuse
late reverberation. In those cases the late reverb is produced
either by convolution or by an efficient algorithmic rever-
berator. The most widely used algorithmic reverberators
are feedback delay networks (FDN), which are efficient
and produce good quality sound output [1, 8].

This category of hybrid GA approaches includes meth-
ods that range from simple auralization algorithms to ex-
tensive room modeling systems such as DIVA [9, 10] and
RAVEN [11, 12]. These auralization programs enable users
to navigate in real time through a virtual environment.

The DIVA auralization system utilizes a mixture of of-
fline and online algorithms [9]. The system is modularised
into an ISM-based early reflection unit that is frequently
updated based on user input and location, and a late reverb
unit that uses an FDN-like structure with precomputed co-
efficients based on room acoustical parameters to produce
late reverb impulse responses. These coefficients are ob-
tained from the combination of a numerical finite differ-
ence method applied to low frequencies and geometrical
ray tracing method applied to high frequencies. They ac-
count for air absorption and acoustic properties of various
materials.

The rationale for using a generic late reverb unit with-
out emphasis on detailed individual reflections is that the
late reverb is thought to contain diffuse, random reflec-
tions, with an exponentially decaying envelope [13]. Since
human listeners can not perceive the detail of individual
reflected rays in such a complex acoustic phenomenon,
it is difficult for them to perceive any difference between
a detailed model and a generic approximation of late re-
verb. Separate delay lines for interaural delay and mini-
mum phase head-related transfer function filters are used to
reproduce binaural effects, whose coefficients are obtained
from a database keyed according to azimuth and elevation,
derived using measurements from human subjects.

RAVEN differs from DIVA in the way it produces the
late reverb using stochastic geometrical modeling methods
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to generate an impulse response, instead of using an FDN
[11]. Stochastic ray tracing is used to compute the time-
energy profile of the late reflections, which is then used
to generate filters which, when applied to a noise signal,
produce a reverb impulse response. In stochastic ray trac-
ing, a random decision between pure specular reflection or
diffuse reflection towards a random direction is taken each
time a ray encounters a surface [14]. This method prevents
the number of rays in the simulation from growing expo-
nentially in the length of the impulse response. For early
reflections, RAVEN also uses the image source method, ac-
celerated using binary space partitioning (BSP), that allows
fast visibility checks of the image sources, and therefore
enabling real-time updates [15]. RAVEN updates its early
reverb simulation more frequently than the late reverb.

In [16], Menzer introduced a real-time binaural room
simulation algorithm that is efficient enough to run on mo-
bile devices, and directly processes the input signal without
convolution. The work presented in [16] is a less detailed
acoustic model than those of DIVA and RAVEN. To enable
efficient auralization with minimal computational load, the
late reverb does not vary with listener or source position
in the room. To do this, Menzer utilized a modified Jot re-
verberator whose coefficients are obtained from a method
of interaural coherence matching using a referenced BRIR
[17]. The work in [17] offers an alternative method to com-
pute the coefficients using a single-channel reference RIR
and a pair of HRTFs in the case where a stereo reference
BRIR is not available. The early reflections are produced
using ISM up to the second order, followed by convolution
with a bank of head-related impulse responses. If the sim-
ulation is restricted to perfectly rectangular rooms, the im-
plementation of the /SM can be further simplified and the
computationally expensive visibility checks can be omit-
ted, allowing for real-time updates.

Menzer proposed another method using two parallel
feedback delay networks, one for rendering the early part
of the BRIR and the other for the late part [18]. That
method is too complex to run on mobile devices at the time
the paper was written. The reason for using two FDNSs in
parallel is that the author observed some diffusion even at
the beginning of measured impulse response. The conven-
tional way of connecting the outputs of early reverb units to
an FDN results in unrealistically distinct early reflections.
This is an especially serious problem when using the image
source method because the pure specular reflection model
has lower echo density than methods that permit diffusion.
The second FDN, used to produce the late reverb, is simi-
lar to the one used in his earlier paper [17], but is designed
such that it produces higher echo density from the begin-
ning and its parameters do not vary depending on listener
and source position. The first FDN produces exact first and
second order reflections, modeled by the ISM. A small set
of head related impulse response convolvers, one pair for
each 1% order reflection, produce the binaural signal.

Wendt et. al introduced another computationally effi-
cient and perceptually plausible hybrid binaural room sim-
ulation algorithm using ISM, FDN, and convolution with
HRIRs [19]. In this work, the authors modeled the effect of
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room geometry and wall absorption coefficients in the late
reverb, and also incorporate interaural effects in it using
HRTFs. This is unique because the late reverb in previous
efficient real time simulations does not respond to changes
in those parameters and would not respond to 6 degree-
of-freedom head movements and rotations like this method
does.

To spatialize the late reflections, they use a 12-delay line
FDN, where each pair of delay lines corresponds to the
length of one of the six major room surfaces, (four walls,
ceiling and floor). Due to this arrangement, the method ap-
plies only to rectangular room simulations. The output of
each channel of the FDN are connected to a series of reflec-
tion filters and HRTF filters, before mixing with the outputs
of the early reflections unit to form a complete binaural im-
pulse response. The authors present extensive objective and
subjective evaluation results. Their method produces good
results in terms of Interaural Cross-Correlation Coefficient
(IACCEg3), however, the authors report a deviation of be-
tween 2 to 10 Just Noticeable Differences (JNDs) in terms
of Clarity, Definition, and Early Decay Time, measured ac-
cording to the standards in ISO 3382-1 [20]. The listening
test shows that the method has good perceptual accuracy,
compared to the measured BRIRs. However this method
in [19] are unable to directly auralize the input signal. The
time to produce BRIRs of lengths 0.73s and 14.0s for fur-
ther convolution were 0.71s and 6.80s, respectively.

In [21], Bai et. al proposed a hybrid artificial reverbera-
tor called the Acoustic Rendering Network (ARN). It uses
the Acoustic Rendering Equation (ARE) and an FDN, and
it can theoretically model both specular and diffuse reflec-
tions for rooms of arbitrary shape. In contrast to all of the
methods mentioned above, Bai models both early reflec-
tions and late reflections using a single FDN, rather than
using a separate early reflections unit consisting of multi-
tap delay lines such as the one presented in [9]. This is
done by first discretizing the room surfaces into patches
and then separating the reflection paths into three parts: one
from the source to each patch, one from patch to patch, and
one from each patch to the listener. The ARE is then used
to determine the amount of energy received by each patch
from the source and other patches, and also the total en-
ergy received at the listener position. The feedback matrix
is set such that each coefficient corresponds to the amount
of energy exchanged between a pair of patches. If N repre-
sents the number of patches in the surface geometry model
then the Bai et al method requires a mixing matrix of size
2N + N2. The authors reported that the method takes 16.5s
to synthesize a 1 second RIR in a rectangular room sized
4m x 6m x 4m that was discretised into 32 square patches.

In this paper we propose a binaural reverberator that sup-
ports arbitrary room shapes, does fast real time parame-
ter updates, and is efficient enough to run on mobile de-
vices. In comparison to related methods, similar advan-
tages are achieved by [19, 16, 21, 9] but only the pro-
posed method achieves all of them simultaneously. Our
method produces both early reflections and late reverb us-
ing a single FDN without using a separate multi-tap delay
for early reflections. This idea of compact design is also
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proposed in [21]. The most significant difference between
the method presented here and the one in [21] is described
in section 2 where we show how the proposed method al-
lows us to use a standard unitary mixing matrix such as
the the Hadamard matrix for the FDN, while still modeling
position-dependent interaural effects not only in early re-
flections but also in late reverb. This allows us to minimize
computation time and enables the proposed method to di-
rectly process the input signal in real time rather than using
convolution with an impulse response.

2 METHOD

2.1 Method Overview

Figure 1 shows a flowchart diagram illustrating the pro-
posed method. The key innovation in this design is that
the lengths of the delay lines in the FDN are set using an
acoustic model so that the first impulse out of each delay
in the network represents one explicitly modeled first-order
reflection. Subsequent circulation of the signal around the
FDN produces higher order reflections with less accuracy.
The gain coefficients at the input and output of each delay
ensure that each early reflection has the correct sign and
amplitude.

We use the Acoustic Rendering Equation (ARE) to com-
pute the coefficients g and v shown in Figure 1. In this
way, the first reflections to issue out of the FDN are exactly
as modeled by the ARE. Late reflected energy approaches
a state of approximately even diffusion [22] and therefore
individual late reflections need not modeled in detail. The
proposed method models only the first order reflections in
detail; for late reverb, we assume that energy is evenly dif-
fused. Based on that assumption, we approximate the av-
erage late reflected energy that reaches the listener from
each patch of the discretized geometry. The weakness of
this approach in relation to related methods is that the sec-
ond order reflections not modeled accurately. We will show
that this sacrifice leads to a much more efficient design that
still gives listeners a natural and plausible sense of location
in the acoustic space.

We model the energy flux from each surface geometry
patch to the listener proportional to the projected area of
the patch as seen from the listener position and inversely
proportional to the square of the distance.

In the remaining parts of this section we will explain the
mathematics we use to model early reflections and estimate
late reverb energy flux for each surface geometry patch.
The goal is to calculate the gain coefficients at the inputs
U, and outputs v, of the N delay lines in the FDN.

2.2 The Acoustic Rendering Equation

Our model of 1% order reflections is a standard appli-
cation of the Acoustic Rendering Equation (ARE) [5]. We
refer readers to our previous work in [23] for further de-
tails on how we model the first order reflections using the
ARE. In this paper, we use the same notations as that in our
previous work in [23].
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Fig. 1: The proposed system: the delay lengths and output gain coefficients in the FDN are chosen so that the first impulses
to come out from the network are the early reflections as modeled by the Acoustic Rendering Equation. Each delay line in
the network corresponds to one patch of surface geometry in a 3D model of an acoustic space. By setting appropriate gain
coefficients U, at the input and v, at the output, we simultaneously get a detailed model of first order reflections and an
approximated model of late reverb energy energy flux reflecting off each surface.

2.3 Irradiance at the Listener Position from Late
Reverb

The following function expresses denotes the acoustic
irradiance (energy flux) at the listener position L due to
energy reflected off of A, the n'* surface patch in the 3D
model,

E(AnL) = (Ni’(;)) /Anh(x,L) . (1)

®(F,) represents the energy flux output of F;, the n'"
channel of the FDN, and G represents the total area of all
surface geometry in the model.

Equation (1) is based on the assumption that as time pro-
gresses the reverberated energy increasingly approaches an
evenly diffused and mixed state [22]. Therefore average re-
flected energy flux density of late reverb is assumed to be
the same across all surfaces in the 3D room model. Signals
in the FDN behave similar to the assumption stated above.
If the initial distribution of energy among its N input chan-
nels is uneven, after circulating through the mixing matrix,
the energy in each channel is approximately the same.!.
Taking the output of each channel of the FDN to repre-
sent the energy flux density at one of the discrete surface
patches in our 3D room model and assuming diffuse reflec-
tion, we can approximate the acoustic intensity at the lis-

'We must select an appropriate mixing matrix to ensure that
this is true. One example is the Hadamard matrix [24]

tener location that results form the reflected energy coming
from each of the surface patches.

Therefore N ®(F,) is the combined energy flux output
of all N channels of the FDN. Dividing by G, the quantity
N ®(F,)/G is the average late reverb energy flux per unit
surface area.

The integral in the right hand side of equation (1) repre-
sents how much surface area in the room contributes to en-
ergy collected at L. The 1/7 term is derived from the con-
servation of energy of an ideally diffused reflection, where
flux input and output at a surface point to all angles is equal
if there is zero absorption loss. A full derivation is shown
in [23].

h(x,L) is the point collection function, similar to what is
defined in our previous work [23], with the addition of the
absorption term &,

h(x,L) = &(x,L) ¥ (x,L) P(x,L). 2)

The absorption & and visibility ¥ terms are defined as
in [5]. The geometry term P(x, L) is also defined as in [23].

The constant N in (1) is the number of discretized sur-
face patches in the 3D model and also the number of chan-
nels in the FDN. Because N applies to both the FDN and
the discretization of the 3D model, our choice of mixing
matrix for the FDN restricts our options for modeling the
room. To efficiently achieve maximally even mixing, we
use the Fast Hadamard Transform to do the mixing opera-
tion, which requires the N be a power of two. Another op-
tion which would allow more freedom in the choice of N is
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the block-circulant mixing matrix proposed in [25], which
requires only that N be a multiple of some integer K, but
needs more time to reach an evenly mixed state when K is
small.

2.4 Gain Coefficients v, at the FDN Output

Let F, denote the output of the n" channel in the FDN.
Since the FDN operates in units of sound pressure, not en-
ergy flux, we have the following relation between the en-
ergy flux ®(F,) and sound pressure F;,

2 =®(F,). (3)

We define the gain coefficient v, as follows,

N
Vo = | /n—g/Anh(x,L)dx. @)

We can confirm by inspection that the following relation
holds,

E(An,L) = (Fv,)>. (5)

This indicates that multiplying the output of the n'”
channel of the FDN by v, yields the late reverb sound pres-
sure output of the n'" surface geometry patch as perceived
at the listener position, L.

2.5 Irradiance at the Listener Position from Early
Reflections

We first need to discretise the surface geometry G into a
set of a total of N discrete patches A, C G, forn = 1...N
and model the 1*" order reflection using the ARE. After-
wards, we need to collect that energy at the listener posi-
tion.

In equation (6) below, E, (A,,L) denotes the acoustic ir-
radiance at the listener position L due to 1% order emitted
radiance ¢, at A, the n'" surface patch in our 3D model. Ir-
radiance is a measure of incident energy flux per unit area,

Ei(An,L) = | h(x,L)¢(x,Q)dx. (6)

An

2.6 Gain Coefficients at the FDN Input

Let ®;, be the energy flux input at reverb audio input and
let [3,,2 be the attenuation coefficient that gives the energy
flux as perceived at the listener position due to 1% order
reflection off the n'* surface patch.

Recall from equation (6) that E|(A,,L) denotes the ir-
radiance at the listener due to 1% order reflections off the
patch A,,. It follows that the following relation must hold,

Ei(An,L) = (F.B,)* ©)

The term ¢; in equation (6) can be computed by applying
the ARE in the usual way?.

However, directly multiplying the input or output of the
n'" channel of the FDN by B, would yield an incorrect re-
sult because we have already multiplied v, at the output

2We refer readers unfamiliar with this method to [26], where
the authors explain it in detail.
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of each channel to model 1% order reflection gain. Instead,
we define L, to be a gain coefficient at the input of the n'"
channel of the FDN and set it as follows,

Hy = ﬁn/vm (8)

The effect of this is that for 1% order reflections, the out-
put coefficient v, is canceled out by the input and the re-
sulting 1% order FDN output is exactly as given in equation
7, but for second and higher order FDN output, the result is
as specified by equation 5, because the signal only passes
through the p, scaling coefficient on the first entry into the
FDN; in subsequent loops it bypasses the input coefficient.
See Figure 1 for a diagrammatic representation of this.

2.7 Modeling Interaural Effects

In order to model the interaural differences in timing and
power spectrum that result from the orientation of the lis-
tener’s ears relative to the direction of incoming acoustic
rays, we use a bank of filters and delays. In Figure 1 these
are labeled ITD and HRTF, which stand for Interaural Time
Delay and Head-related Transfer Function.

In reality, the interaural time delay and the head re-
lated filtering effects are different for every possible angle
of incidence. However, rays coming from similar angles
will have similar delay times and filter transfer functions.
Therefore we can approximate the interaural differences by
quantising each incoming angle into M sectors around the
listener’s azimuth, and processing incoming acoustic rays
that quantise into the same sector with the same HRTF fil-
ter and ITD delay.

To accomplish this, we place a multiplexer between the
FDN and the filter and delay banks. This multiplexer mixes
each of the FDN output channels into one of the M filters
for the left ear and another for the right ear, according to
the quantised angle of incidence from the surface geome-
try patch represented by the FDN channel to the listener
position.

When we perform the acoustic modeling for first order
reflections, we set the delay time according to the distance
from each surface patch to the nearest of the listener’s two
ears. To compensate for the additional delay to reach the
ear on the far side of the listener’s head, we use the bank
of inter-aural delays. The interaural delay time for a given
angle is zero for the near-side ear and non-zero for the far-
side ear. Since the inter-aural delay time depends only on
the angle of incidence in the horizontal plane, we reduce
the number of inter-aural delays by quantizing the angles
of incidence into a small number of groups.

For the HRTF filterbank, we use a pole-zero filter model
for a spherical head as proposed by Brown and Duda [27].
We also use the same filter for the direct rays except that
for direct rays we input the exact angle of incidence with-
out quantising. It is known that the spherical head model
lacks the general boost between 2 to 7 kHz that is typically
caused by ear canal and concha resonance [28] and the high
frequency roll-off or notch above 8kHz depending on front-
back configuration [29]. Further explanations can also be
found in [30, 31]. While it is impossible to model every
individual HRTF, one may add simple pole-zero EQ and
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low-pass filters at each channel or at the mixdown output of
the channels, to mimic the desired general boost between 2
to 7kHz and roll-off above 8kHz. This is similar to general
filtering effects applied at certain in-ear headphones that
attempt to mimic the reproduction of ’live recording’. Our
informal listening test indicates that the addition of these
filters improve the overall quality of the simulation, while
only causing negligible changes in the objective evaluation
parameters.

2.8 Method Summary

In summary, the goal of the acoustic modeling calcula-
tions in this method is to set the gain coefficients at the
input and output of each delay line in the network, shown
in Figure 1 as u, and v,. The procedure can be outlined as
follows,

1. We discretise the surface geometry G into a set of a total
of N discrete patches A, C G, forn = 1...N.

2. Set the length of the n'"* delay line to correspond to the
timing of the first-order reflection that comes from the
n'" patch of surface geometry.

3. Compute v,: Assuming that late reverb energy flux re-
flects diffusely and is evenly distributed over the room
surface geometry, estimate the fraction of the total en-
ergy flux that should reach the listener from each of the
N surface patches in the virtual room. Use the results
to set the values vy, V2, ...Uy, shown in Figure 1 using
equation (4).

4. Using the Acoustic Rendering Equation in [5], model
the 1* order reflections and compute the amount of en-
ergy at the listener due to 1% order reflections using
equation (6). Each of the N surface patches in our virtual
room produces one first-order reflection. Each of those
reflections corresponds to one delay line in the FDN.

5. Compute U, Let B, represent the gain of the 1% order
reflection. Compute it with equation (7) using values
from (7) obtained in the previous step. Then the coef-
ficient u, at the input of the n'" delay line in the FDN
is 4, = B,/ vy. The effect of this is that the gain of the
first impulse issued from each delay d, is exactly f3,.

6. Subsequent reflections from that same delay d,, will en-
ter the delay line directly from the mixing matrix with-
out passing through the input gain coefficient ,, hence,
v, will at the delay output will scale the late reverb sig-
nal for that delay proportional to the energy flux output
of the n'" patch of surface geometry that we estimated
in step 1 above.

3 OBJECTIVE EVALUATION

3.1 BRIR Recordings

To evaluate the performance of our proposed method, we
use BRIR samples taken from seven different rooms. Two
of the impulse responses are taken from the AIR database
[32] and we measured the others ourselves. The rooms are
as follows,
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e RI: A lift lobby (1.95m by 5.52m by 2.9m) in a base-
ment. The floors and walls are made of marble, and the
ceiling is made of painted concrete. There are three al-
coves for lift doors which were closed during the record-
ing. The door at the entrance is wooden. The average
reverberation time of this room is 1.81s.

e R2: A long, empty, rectangular room (1.42m by 7.23m
by 2.61m) with concrete walls, ceiling, and floor with
three wooden doors. The room serves as an entryway for
two dry riser closets. The average RT60 reverberation
time is 1.2s.

e R3: A small, empty, almost square room (2.68m by
2.75m by 2.98m) that serves as a smoke-stop lobby to
minimise the entry of smoke into the emergency stair-
case in the next room. There are in total of two emer-
gency doors leading to this room, which were closed at
all times. The room is made of concrete, with an average
reverberation time of 2.2s.

e R4: A lecture room from the AIR database (10.8m by
10.9m by 3.5m) containing desks and chairs. The aver-
age reverberation time of this room is about 0.8s.

¢ R5: A meeting room from the AIR database (8m by Sm
by 3.5m) with a conference table and several chairs. This
room has an average reverberation time of 0.23s.

¢ R6: An office room from the AIR database (5.00m by
6.40m by 2.90m) with several office furnitures such as
wooden desks, shelves, and chairs. The average rever-
beration time is 0.43s.

We measured two configurations of source and micro-
phone positions (labeled P1 and P2) R2, and R3. Seven
source-microphone configurations were measured in R1.
Two representative positions (labeled P1 and P2) were se-
lected for objective evaluation in section 3.5. The rest of
the configurations were used for listening test explained in
section 4.2.1 instead. For BRIRs from [32], we took two
configurations in R6 and one source-microphone configu-
ration in each of the other rooms. In total, we used 10 BRIR
recordings for the objective part of the evaluation.

To measure and record BRIRs in R1 to R3, we used the
logarithmic sine sweep method presented in [33]. A 50s
logarithmic sweep is generated between 5S0Hz and 20kHz
using an omni-directional speaker with sufficient volume
so that the resulting BRIR has a minimum decay range of
57 dB [34]. The response of the speaker is shown in Figure
2. The signal was recorded using a pair of omni-directional
binaural microphones (BE-P1) that are placed inside the
ear canals of an artificial head (B1-E) which has a diameter
of approximately 16.8cm. We use Lundeby’s method [35]
to find the point where the signal level falls below the noise
floor and truncate the impulse response at that point. They
are then equalized to minimize the effects introduced by
the speaker response.

3.2 Implementation of the Acoustic Simulation
We implemented the proposed method in C++ in an i0S

application that directly processes the input signal in real

time as an algorithmic reverb. Our method can process the
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Fig. 2: The frequency response of the omni-directional
speaker used to measure BRIRs in R1, R2, and R3.

input signal directly through the FDN as opposed to pro-
ducing an impulse response and doing convolution because
the proposed method processing directly is more efficient
than a convolution reverberator. This results in much faster
update times, especially in rooms with long reverberation
times because it eliminates the need to produce a new im-
pulse response of several seconds in length every time we
want to update parameters. However, for the objective part
of our evaluation, we did produce impulse responses using
the proposed method so that we could make measurements
on them.

We simulated a set of 10 BRIRs corresponding to the
rooms described in the previous section using 3D meshes
subdivided into 32, 64 and 128 patches. In each case, the
size of the FDN corresponds to the number of patches in
the mesh because the energy flux output at each patch is
modeled by one channel of the FDN. With even subdivi-
sion of the mesh, this ensures that the average length of the
FDN is at least as long as the mean free path of the room,
as recommended in [36].

For the numerical integration, we used the Monte Carlo
method with 50 sample points per mesh patch. In our inter-
aural model, we quantised incoming angles into 12 sectors.
There is some variation in the results due to the randomisa-
tion in Monte Carlo integration, so we repeated each simu-
lation 20 times and report the average in our results section.

For comparison, we also implemented two baseline
methods in C++ to simulate the two sets of 10 BRIR
recordings,

1. Baseline Method 1 (Baseline ISM): We generate the
binaural impulse response up to third order using the
ISM method [2] implemented with a multi-tap delay
and send the delay tap outputs representing the third or-
der reflections into an FDN with 32, 64, or 128 delay
lines to model late reverb. This is similar to the imple-
mentation in [19].

2. Baseline Method 2 (Baseline ARE): We generate the the
BRIR up to second order reflections using the ARE [5]
and a multi-tap delay, and route the delay tap outputs
corresponding to second order reflections into an FDN
with 32, 64, or 128 delay lines to model the late reverb.
Corresponding to the number of delay lines in the FDN,
the 3D model of the room is discretized into 32, 64, or
128 patches as well. To solve the ARE we use Monte-
Carlo numerical integration with 50 points per patch.
We multiplex the second order output into the FDN,
such that the output from the corresponding patch is

MINIMALLY SIMPLE BINAURAL ROOM MODELLING USING A SINGLE FEEDBACK DELAY NETWORK

grouped together as an input to the delay line that rep-
resents reflection from that particular patch.

We used the fast Hadamard Transform to do the mixing
operation for the FDN in all cases. To make a fair compar-
ison, the FDN used in both baseline methods is identical to
the FDN used in the proposed method, where the length of
each delay line in the FDN is the time taken for sound to
travel from the source to one of the surface patches in the
room and finally to the listener. To model interaural effects
in both baseline methods, we apply head-related transfer
function filters and interaural time delays to each individ-
ual reflection, instead of quantising angles into sectors like
the proposed method does (explained in section 2.7).

3.3 Computation Time

Since the proposed method processes directly on the in-
put signal as an algorithmic reverb, rather than producing
an impulse response for convolution, the most important
measurement with respect to its performance is the time
to update the model parameters following a change in lis-
tener or source position. The parameters that update with
each change are the lengths of delays in the FDN, the in-
put and output coefficients u, and v, and the multiplexer
coefficients that determine to which HRTF filter and inter-
aural delay each channel of the FDN mixes to, according
to the angle between the listener and the surface geome-
try patch each FDN channel represents. The update times
of the proposed method for three different mesh sizes are
shown in Table 1. Note that when we compare the proposed
method against the baseline methods, the baseline methods
work by convolution rather than directly processing the in-
put signal, so the most meaningful way to compare the two
is to compare update time of the proposed method against
time to render an impulse response for the baseline meth-
ods. Also note that white the update time for the baseline
methods depends on the length of the impulse response but
update time for the proposed method does not. The binau-
ral early reflections units of the baseline methods are too
slow for realtime processing directly on the input signal as
algorithmic reverbs, so we are forced to implement them
using convolution instead.

Table 1 also shows the time required to produce an im-
pulse response for the proposed method and two baseline
methods with mesh sizes of 32, 64, and 128 patches. Note
that the ISM implementation in the baseline method as-
sumes a rectangular room shape so it uses a fixed mesh
size of 6 surfaces for early reflections but for late reverb
it uses an FDN of order corresponding to the mesh size
reported in the top row of the table. Rooms R1 to R6 are
close to ideal rectangular shapes. We use an implementa-
tion of the ISM for perfectly rectangular rooms that is sig-
nificantly more efficient than implementations supporting
arbitrary geometry [2]. If arbitrary room shape is used, the
computational time using ISM will be much longer. The
ARE implementation we use is capable of supporting arbi-
trary room shapes and its performance depends only on the
density of the mesh.
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All values in Table 1 are averages of 20 simulations run-
ning on a Mac laptop with 2.5 GHz Intel Core i7 CPU and
16GB RAM on code compiled from C++. The study in [37]
states that to create a realistic acoustic simulation in virtual
reality systems, an update is required every 550ms when
the user is navigating around the room at a normal walking
speed, as the overall acoustics of a room do not drastically
change for small changes in listener position. In the case
of room acoustics simulations where not only direct signal
but also reverberation is present, a lower update rate for the
reverberation (both early and late reflections) is acceptable.
Also, according to the study in [38], a latency of 80ms and
below between a head-tracker and a direct audio signal is
low enough so that listeners don’t detect the lag. As shown
in Table 1, the update time for the proposed method is less
than 80ms, even for the finest mesh setting.

Update Time (ms) for Baseline and Prop. Methods

Mesh Size 32 64 128
Prop. Method Direct | 11.26  24.20 49.18
B. Method ISM BRIR | 176.32 243.61 351.97
B. Method ARE BRIR | 8009 30830 123088
Prop. Method BRIR* | 192.15 24991 411.98

Table 1: The direct update time for the proposed method is
the time it takes to re-calculate the model parameters for
a change in listener or source position. The baseline meth-
ods work by convolution, hence the reported time is the
time they take to render a 1.8 seconds long BRIR. For com-
parison, we also report the time that the proposed method
would require to render a BRIR of the same length. *Please
note that in implementation the proposed method never ac-
tually renders any BRIR because it is implemented as an
algorithmic reverb rather than a convolution reverb.

3.4 Objective Evaluation Parameters

ISO 3381-1:2009 defines a list of parameters to measure
and describe the characteristics of a BRIR, measured in the
500Hz and 1000Hz frequency bands [20]. They are rever-
beration time (RT¢g), early decay time (EDT), definition
(Dsp), clarity (Cgp), center time (Ts), and interaural corre-
lation coefficient (IACCg3). Except for the IACCg3, they
are all averaged between the left and right channels. We
measure IACCgj in three octave bands: 500Hz, 1000Hz,
and 2000Hz as suggested in [39] so that these values can
be used to directly indicate the apparent source width.

To quantify the amount of error the simulated BRIRs has
in terms of the above room parameters, we use the JND.
JND is defined as the smallest amount of change in a par-
ticular variable that is noticeable more than half of the sub-
jects of interest [40]. The JND values for RT¢g and EDT
is set as a deviation of 5% between measured and simu-
lated values. For Dsg, Cgp, and Tjg, it is set as 0.05, 1dB,
and 0.01s absolute difference between measured and sim-
ulated values respectively. The JND values for these five
room parameters are computed in the average of 500Hz
and 1000Hz frequency bands. For IACCgs, it is counted
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as 0.075 absolute difference between measured and simu-
lated values in the average of S00Hz, 1000Hz, and 2000Hz
frequency bands.

Since we set the RTgg decay time of the FDN to match
the measured decay time of each room (as opposed to cal-
culating decay time using Sabine’s formula) the simulated
BRIRs from the proposed and baseline methods closely
match the recorded BRIR. All of the simulated IR decay
times are less than 0.5 JND from the measured BRIR de-
cay time. Therefore for the subsequent sections, we will
not continue to report results for decay time.

3.5 Results
3.5.1 Comparison with Measured BRIR

Table 2 shows the raw values of all five room parame-
ters from the measured BRIR and from the BRIR produced
by the proposed method using 128 patches. Values that are
greater than 1 JND are printed in bold. The evaluation in
[19] does not present results from different source and lis-
tener positions in the same room. However, we feel it is
relevant to take measurements at several different source
and microphone positions in the same room because we ob-
served significant position-dependent variation in some of
the parameters. For example, the difference in T between
P1 and P2 in R6 is more than 1 JND (more than 0.01s),
of which both effects are captured by the proposed method
using 128 patches. Among the three acoustic parameters
that indicate the balance of energy between early and late
reflections (Dsg, Cgg, and Ty), Cgo seems to have the most
cases where its error is larger than 1 JND. The absolute
value of Cgg error is also larger than both D5y and Ty for
most of the 10 simulations. A possible reason for this is that
the study in [41] recommends that the JND value for Cgg
should be 3 dB, which is three times higher than the value
suggested in the ISO standard [20], which we are using to
report the data in Table 2. If 3dB is used as a JND value for
Cgo, the mean JND of Cg for the proposed method would
be below 1 JND.

The error in terms of absolute JND for EDT is 2.15 for
proposed method using 128 patches, which is relatively
much larger than the rest of the parameters. Table 2 also
shows that the EDT values for six out of 10 simulated loca-
tions has error larger than 1 JND. In general EDT is known
to be very sensitive to small errors [20]. In GA methods,
we typically see wider margins of error in the EDT than
other parameters. We postulate that inaccurate modeling
of the bi-directional reflection function may be the cause
of this. An accurate BRDF model significantly increases
the computational cost of doing numerical integration. For
that reason, efficient applications of the ARE typically use
pure specular reflection, pure diffuse reflection, or both of
them combined. None of these options is an accurate rep-
resentation of the physical reality. In our implementation,
the baseline /SM method models pure specular reflection.
The proposed method and the baseline ARE method use
pure diffuse reflection. In Table 2, a significantly higher
EDT error is observed in R6. The proposed model actually
may even actually yield higher error with a more detailed
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BRIR Measured 1\/1[:’;31% d Measured NII);tolf)o. d Measured l\/if?}f)(; d Measured 1\/:31% d Measured NE:?IE). d
IACC D5 Cgp (dB) Ts (s) EDT (s)

R1P1 0.417 0.340 0.317 0.295 -0.577 -1.281 0.139 0.145 1.979 2.010
R1 P2 0.335 0.393 0.345 0.320 -1.620 -0.813 0.138 0.145 2.021 2.115
R2 P1 0.226 0.203 0.469 0.384 1.445 0.356 0.094 0.095 1.594 1.232
R2 P2 0.305 0.345 0.455 0.422 1.173 1.777 0.102 0.090 1.605 1.298
R3 P1 0.263 0.308 0.314 0.315 -1.199 -1.607 0.150 0.154 2.059 2.213
R3 P2 0.246 0.305 0.317 0.322 -0.771 -1.748 0.152 0.148 2.268 2.172
R4 0.433 0.434 0.577 0.640 4.167 5.170 0.064 0.053 0.876 0.950
R5 0.722 0.665 0.947 0.969 18.483 19.439 0.016 0.009 0.166 0.166
R6 P1 0.557 0.549 0.772 0.793 9.963 8.888 0.031 0.029 0.559 0.641
R6 P2 0.778 0.682 0.897 0.883 12.342 11.762 0.019 0.018 0.413 0.514

Table 2: The values of all five room parameters of the measured BRIRs and simulated BRIRs using the proposed method
with 128 patches. Results in bold are more than 1 JND from the measured result.

subdivision of the model. For example, the mean absolute
error of EDT using 64 and 32 patches is 3.86 and 2.41 JND
respectively. This suggests that our 3D mesh does not ac-
curately represent the shape of that room. We obtained the
impulse response for that room from the AIR database and
set the parameters of the 3D model based on the description
reported in [32].

3.5.2 Comparison with Baseline Methods

Prop. Method 128 64 32
IACC 0.620 1.781 3.056
D50 0.580 0.804 0.827
C80 0.820 0.675 0.930
TS 0.562 0.639 0.771
EDT 2.149 3.856 2.406

Table 3: Mean absolute JND values from all 10 BRIRs us-
ing proposed method, with 32, 64, and 128 of patches. Val-
ues that perform worse than either baseline methods are
printed in bold.

In this section we compare the performance of the pro-
posed method against the two baseline methods we de-
scribed in section 3.2, which use a separate multi-tap delay
and FDN for early reflections and late reverb. One baseline
method simulates early reflections up to the 3’ order us-
ing the image source method and the other uses the acoustic
rendering equation up to the 2" order. We compare the per-
formance of each using three mesh densities: 32, 64, and
128 patches. The FDN size for each method corresponds
to the mesh size. Tables 5 and 6 present the mean of the
absolute value of the modeling error for the baseline ARE
and ISM methods, respectively, in units of JND. In Table
3, the mean absolute error value of the proposed method
is printed in bold when it is greater than either one of the
baseline methods and in plain text when it is less than both
of them. Note that for mesh sizes 64 and 32, the proposed
method performed worse on IACC than the baseline meth-

ods. Recall that in the implementation of the interaural ef-
fects of the baseline methods, the HRTF and ITD filters are
applied to each individual reflection, while in the proposed
method we have only an eight channel filterbank. This may
imply that the error introduced by quantising the angle can
be compensated with a finer mesh setting. The errors for
EDT in all three methods are significantly higher than the
rest of the room parameters. The authors in [42] report that
EDT is sensitive to changes in scattering coefficients. The
FDN used in the proposed method mixes energy in equal
amounts from each patch in the room to every other patch.
This does not correspond to any physically informed model
of scattering. Based on the work presented in [19] and [43]
it appears that in general, hybrid geometrical acoustic sim-
ulation methods do not model EDT well.

We also conducted a Wilcoxon Signed-Rank test to com-
pare the performance of the proposed and baseline meth-
ods. We compare the mean absolute error of the proposed
method against each of the two baseline methods. Since the
proposed method uses the ARE to model only the 1*" order
reflections, we do not intend for it to out-perform either of
the baseline methods, which model early reflections up to
second order using the ARE, or third order using the ISM.
Our goal is only to have the proposed method achieve close
to accuracy of the baseline while being significantly more
efficient. See Table 1 for timing data.

In the Wilcoxon test, our alternative hypothesis Hy is
(|Mprop| — |Mbasetine|) < 1, where |u| represents the mean
absolute JND of all 10 simulated BRIRs. In other words,
the alternative hypothesis states that the difference between
the absolute value of mean of the proposed method and
the baseline method is less than 1 JND. The motivation
for this hypothesis is that we want to show that the pro-
posed method, although simpler and faster than the base-
line methods, is not audibly less accurate.

Table 4 shows the p-values of the test. Except for IACC,
all of the simulation results support rejecting the null hy-
pothesis with at least 99% confidence level. This shows
that despite being simpler and more efficient than the base-
line method, the average simulation error of the proposed
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Mesh Size 32 Mesh Size 64 ‘ Mesh Size 128

Baseline Method ISM ARE ISM ARE \ ISM ARE
TACCg3 0.500 0.500 0.216 0.053 | 0.001* 0.002*
D50 0.001* 0.007* | 0.002* 0.002* | 0.003* 0.002*
C80 0.005* 0.014* | 0.002* 0.001* | 0.001* 0.001*
TS 0.003* 0.003* | 0.001* 0.001* | 0.000* 0.013*
EDT 0.010* 0.014* | 0.216  0.001* | 0.024* 0.001*

Table 4: The p values for Wilcoxon Signed-Rank test with Hy: |Uprop| — |Ubaseline| < 1, Where || represents the mean
absolute JND, testing against different baseline methods: the ISM and ARE baseline methods for mesh sizes 32, 64, and
128. p-vals in asterisk (*) are those that are less than 0.05, indicating tests that have confirmed the alternate hypothesis at

95% confidence level.

B. Method ARE 128 64 32
IACC 3.116 2.284 1.380
D50 1.029 1.018 0.827
C80 1.670 1.334 1.489
TS 1.089 0.977 1.193
EDT 3.566 2.781 2.641

Table 5: Mean absolute JND values from all 10 BRIRs us-
ing baseline ARE method (named as B. Method ARE in
the table), with 32, 64, and 128 of patches.

B. Method ISM 128 64 32
IACC 3.065 1.543 1.560
D50 0.865 1.051 1.001
C80 1.753 1.051 1.001
TS 1.061 0.927 1.094
EDT 4.446 4.009 4.644

Table 6: Mean absolute JND values from all 10 BRIRs us-
ing baseline ISM method (named as B. Method ISM in the
table), with 32, 64, and 128 of patches.

method is less than 1 JND higher than the baseline meth-
ods. For IACC we can reject the null hypothesis only for
the size 128 mesh. This supports our conjecture that model-
ing a perceptually accurate IACC requires some minimum
amount of acoustic rays per square meter. The result might
also imply that simulation of higher order reflections im-
proves the accuracy of IACC when the number of patches
used is small.

It is worth noting that it is possible to model second
order reflections using the proposed method. That could
be implemented by simulating second order reflections us-
ing the ARE and using the results to set the FDN delay
times and output gains in exactly the same way that we do
with the first order reflections. To test that idea, we imple-
mented that method of second order modeling in the pro-
posed method and ran some informal tests. We found that it
increased update time with very little improvement in the
accuracy. Since we intend for the proposed method to be

efficient rather than accurate, we do not include those re-
sults in this paper.

4 SUBJECTIVE EVALUATION

Our intended applications for the proposed method are
virtual reality and gaming, fields where perceptual plausi-
bility may be as important than the objective measures dis-
cussed in the previous section. In this section we evaluate
our method in terms of the following five perceptual qual-
ities: naturalness, reverberation, coloration, metallic char-
acter, and source width as suggested in [44]. The procedure
and result is presented in sections 4.1.1 and 4.1.2, respec-
tively. Additionally, we conducted a second listening test to
measure the sense of spatial location that listeners perceive
when listening to sounds processed through the proposed
reverberator. The procedure and result for the second lis-
tening test is presented in section 4.2.1 and 4.2.2 respec-
tively.

4.1 Part I: Listening Test Evaluation of Standard
Perceptual Qualities
4.1.1 Test Subjects and Procedure

19 subjects (12 female, 7 male) with ages ranging from
20 to 40 participated in this listening test. 15 out of 19 sub-
jects are experienced musicians. All of them reported nor-
mal hearing ability. The listening test was conducted in a
small, carpeted, and enclosed meeting room. The room was
quiet as its air conditioner was switched off to further elim-
inate background noise. The test was delivered using a pair
of AKG-702 headphones and a headphone amplifier at a
sampling rate of 44.1 kHz.

For the listening test, we selected four representative
BRIRs (R2 P1, R3 P1, R4, and R6) from the 10 BRIRs we
used in the section 3. They are selected such that we have
a variation in both room size and reverberation time. Two
8s long anechoic input signals, a male spoken speech and a
guitar piece were convolved with both the measured BRIR
and the synthesized BRIR using 64 and 128 patches. Also,
since geometric acoustics methods do not accurately simu-
late wave phenomena in the lowest frequencies of the audio
band [45], we filtered the dry audio signals to exclude fre-
quencies below 100 Hz. To ensure fair comparison across
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Fig. 3: Histogram of the 15-scale bipolar ratings by 19 subjects on all five perceptual qualities, using the synthesized signal
from the proposed method with 64 patches (left) and 128 patches (right). The rating scale is explained in section 4.1.1.
The mean (u) and standard deviation (o) of the rating across all rooms and subject is presented for each histogram. In
each sub-figure we also show the p value obtained from the Lilliefors test.

listening test subjects of various ages, we also filtered out
frequencies above 15 kHz as recommended in [46].

We presented each listener with sets of three audio files
at a time, one file convolved with the measured BRIR and
two more processed with the proposed method using 64
and 128 patches in the mesh. We refer to these three types
of samples as measured signal, synthesized signal 64 and
synthesized signal 128.

Each subject was asked to compare the degree of natu-
ralness (less - more), reverberance (less - more), coloration
(darker - brighter), metallic character (less - more), and
source width (smaller - larger) of the synthesized signals to
the measured signals and rate each of them on a 15-point
bipolar scale (anchored at -7 and 7 for both extreme ends).
This is a general scale often used for subjective tests of
perceptual qualities. It has been shown to produce reliable
results and reduce grade inflation [47, 48].

The descriptions for the ratings given to the subjects are
as follows: 0 for exactly the same, 1 or -1 for similar, 2 or
-2 for very slightly different, 3 or -3 for slightly different,

4 or -4 for moderately different, 5 or -5 for quite different,
6 or -6 for significantly different, and 7 or -7 for extremely
different. The order of the five perceptual qualities to be
rated by each subject was randomized.

To prevent exhaustion, we encouraged the subjects to
take small breaks in between and take as much time as they
want in completing the test. The subjects took between 45
and 60 minutes to comfortably finish the test.

4.1.2 Results

Figure 3 shows histograms of the ratings given by all
19 subjects, in all four locations for the synthesized sig-
nal 64 (left) and synthesized signal 128 (right), with two
samples rated at each location. Each histogram represents
a total of 152 ratings. The mean and standard deviation on
the ratings across all rooms by all 19 subjects are shown
beside each histogram. We also show the p value obtained
from Lilliefors test to indicate the normality of the dataset.
Given the limited number of participants, we do not always
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Fig. 4: Boxplots of the 15-scale bipolar ratings by 19 subjects on all five perceptual qualities: Naturalness (Nat), Rever-
berance (Rev), Coloration (Col), Metallic Character (Met Char), and Source Width (SW) using 64 and 128 patches. Each
boxplot contains 76 responses in total from 19 subjects and 4 different room condition.

expect normality in the response. However in general, the
results show a fair consistency between measured and syn-
thesized signals, as each histogram has single peak with
roughly equal amount of variance on each side. Figure 4
shows the boxplots of the same dataset. Most answers are
roughly symmetric about the median, and the median of
the dataset is close to the mean for each condition.

As expected, synthesized signals using 128 patches are
rated as perceptually closer to the measured signals as com-
pared to synthesized signals using 64 patches. We con-
ducted a Wilcoxon Signed-Rank test to validate this claim.
The alternate hypothesis is that the absolute rating using
128 patches is lesser than the absolute rating using 64
rating. With 5% significance level, we found that the p-
values are 0.031, 0.001, 0.001, 0.032, and 0.102 for nat-
uralness, reverberance, coloration, metallic character, and
source width respectively.

Most subjects rated the synthesized signal as exactly as
natural as the measured signal. In general, subjects viewed
the synthesized signal as more reverberant than the mea-
sured signal. This contradicts the fact that the reverberation
time between measured and synthesized signal is always
less than 0.5 JND, suggesting that they shouldn’t be notice-
able at all. We noticed that the main weakness of synthe-
sized signal with 64 patches appears to be coloration, with
most subjects gave negative rating, and it also has a larger
spread as compared to the rest of the histograms. The re-
sponse looks like a bimodal distribution. There is also a
slight error in the perception of source width, where most
subjects rated both synthesized source widths as larger than
the measured ones. This error might be attributed to the fact
that the synthesized method only use simple spherical-head
approximation as HRTF.

4.2 Part ll: Measuring the Sense of Spatial
Location

4.2.1 Test Subjects and Procedure

The goal of the the second part of our subjective evalu-
ation is to determine how effectively the proposed method
generates perceptual cues that allow listeners to determine
their position in a virtual room. To do this, we conducted
listening tests where we showed listeners several images
with the listener and sound source locations marked on the
map of a room and asked them to select the image that
best corresponded to their auditory perception. The tests
described in this section attempt to answer the question,
does the loss of detail resulting from a rough and simpli-
fied approximation (like the method proposed here) nega-
tively affect the listener’s ability to perceive his or her own
location and the spatial characteristics of the room?

We conducted tests with 11 experienced listeners (4 fe-
males and 7 males), all reported normal hearing ability. The
test subjects include one recording engineer, five virtual-
reality gamers who report familiarity with listening to spa-
tial audio localisation cues, and five academic researchers
in audio-related fields. 6 out of 11 subjects are musicians.
The age of test subjects ranges from 26 and 40 years. Each
test took between 25 to 40 minutes to complete, and we
conducted them using the same hardware: a MacBook pro,
a vacuum tube headphone amplifier, and a set of AKG Q-
701 headphones. The test was carried out in a quiet envi-
ronment as the one described in part I of the listening test,
therefore there was negligible background noise and it im-
posed no effect on the results.

To produce the recordings used in the listening test, we
obtained a recording of an acoustic guitar recorded with the
microphone up close with no audible room reverberation
[49]. For each configuration of listener and source position
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in the test, we produced two versions of the recording, one
convolved with a simulated impulse response and the other
with a measured impulse response. The impulse responses
are taken from R1 with various source-microphone config-
uration.

Each question of the test consists of a pair of sound
recordings and a pair of pictures showing the floor plan
of a room with listener and sound source locations marked.
Figure 5 shows a sample of two such questions. The com-
plete test consists of ten questions of this type. Each listen-
ing test candidate answered the same set of ten questions
twice, once with the reverb using the measured impulse re-
sponse and once with the simulated reverb. We randomised
the order so of the tests to eliminate the possibility that the
measured IR test affected the results of the simulated IR
test or vice versa. Test subjects were allowed to replay the
recordings as many times as they needed. We counted the
number of correct answers in each of the two sets of 10
questions from each participant.

as1 Qs 2
Listen to 1A&1B Listen to 2A&2B
Assign to the correct configuration Assign to the correct configuration

at the back of in the middle

the room of the room near right wall near left wall

Fig. 5: Sample listening test question

In the design of the listening test, we were careful to
avoid posing questions where the the listener would be
able to guess the correct answer on the basis of the an-
gle between source and listener alone. For example, if we
present the listener with a question where answer choice A
showed a source-listener configuration where the source is
to the left of the listener and choice B showed the source
to the right of the listener, the listener could easily match
the sounds to the correct room map image based on the
relative volume between the left and right ears alone, with-
out listening to the reverb at all. To ensure that we were
testing the listener’s perception of the reverberation rather
than the direct sound from source to listener, we kept the
listener and source at the same distance and angle relative
to each other; the two moved around the room as a pair.
Figure 5 illustrates an example of this. Therefore, any de-
tected change in direct-to-reverberant ratio is purely due to
the reverberant part of the impulse responses.

Since we used BRIRs from the same room R1, we elim-
inated the possibility that the listener could guess the an-
swer based on reverberation time or other properties inher-
ent to the room but not unique to the listener’s position in
the room.

4.2.2 Result

Figure 6 summarizes the normalized score of the listen-
ing test from the 11 test participants. The test has ten ques-
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tions for the proposed method and ten questions for the
measured impulse responses. We normalised scores onto
the range [0, 1], so that 1 indicates 10 out of 10 questions
correct. The average score for the measured IR is (0.72)
and for the simulated IR is (0.764).

B Recorded Impulse Response
1 Simulation Score

0.75

Normalised Score
o
[6)]

0.25

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10L11
Listeners

Fig. 6: Normalised listening test scores of 11 test partic-
ipants, comparing results for measured (black) and simu-
lated (grey) reverb impulse responses.

In general, candidates that scored well on the first set
of questions also scored well on the second set of 10
questions, regardless of whether they used the recorded or
simulated reverb first. To quantify this, we calculated the
Spearman Correlation Coefficient of the two sets of results.
The R-value for correlation between measured and simu-
lated test results is 0.853, and the two-tailed value of p is
0.00085, indicating a statistically significant positive linear
correlation between the score on the simulated reverb test
and the score on the measured reverb test.

To investigate whether the correct answer rate is signif-
icant, we conducted a one-sided binomial test. The total
sample size from all 11 listeners is 110, as each listener has
to listen to perceptual cues in 10 different configurations.
According to [50], for 5% significance level, the amount of
correct answer percentage should be higher than 58.32%
such that it is safe to assume that the answers given by
the listeners were due to audible differences and not due to
chance. The correct answer percentage using our method
is 76.3%. This indicates that the correct answer rate is sig-
nificant and that the proposed method effectively generate
perceptual cues that allow listeners to determine their posi-
tion in the virtual room.

The more important insight to be gleaned from the data
is that with regards to their sense of auditory-spatial lo-
cation, human listeners are sensitive only to the grossest
and most obvious auditory cues. This is significant because
it implies that our efforts to make very accurate acoustic
models may be in vain if the end goal is simply to give the
listener a plausible sense of spatial location. We strongly
recommend further research to determine the relative per-
ceptual importance of each of the types of auditory cues
typically simulated in reverbs of this type. The method
proposed here, although simpler than previous methods,
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was designed to maintain a reasonable level of accuracy
in terms of the objective measures discussed in the previ-
ous section. If it should turn out that this level of realism is
perceptually irrelevant, we might further simplify the de-
sign.

4.3 Discussion

We noted the following observations when conducting
both the listening tests.

First, most of the subjects who participated in the sec-
ond listening test experienced fatigue after competing both
sets of 10 questions. In total, they had to listen to 40 ver-
sions of the same classical guitar recording played through
convolution with 40 different reverb impulse responses (2
files per question, two sets of 10 questions). In most cases
listeners chose to listen to the audio samples for each ques-
tion several times. Listener fatigue may have reduced the
accuracy of the test results in part II.

Second, in informal preliminary tests we tried sev-
eral different headphones and found that the spatial cues
became significantly clearer when using professional-
standard headphones. We had difficulty discerning loca-
tion when listening with the white ear-bud headphones
that come included with one of the most popular brands of
mobile phone. It may be worth investigating this further
before deploying binaural reverb in virtual reality gaming
applications because the majority of users would likely be
using inexpensive headphones. Results were much better
with over-ear style headphones such as the AKG-701 that
selected for the listening tests.

Third, we noticed that test candidates were easily con-
fused if they listened to a single sound file for too long.
Best results were obtained when the candidates rapidly
switched between the measured and synthesized signals
for part I of the listening test and between A and B sound
files (see Figure 5) for part II of the listening test to listen
for differences, rather than listening to an entire file before
switching to the other alternative.

Especially interesting feedback from the perspective of
producing minimally simple perceptually plausible simu-
lation is the listening test results, wherein many expert lis-
teners found it easier to guess their position in a virtual
room from the sound of the simulated reverb than when
listening to audio processed through the real room impulse
responses. First, this suggests that the human ability to per-
ceive details in acoustic models is somewhat limited, and
therefore there is no need to develop more complicated and
accurate models unless the goal of the modeling extends
beyond perceptual plausibility. Second, it may be that the
simplified geometric models used in our listening tests re-
sulted in clearer perceptual cues than the more complex
geometry of the real spaces due to lack of distracting de-
tails. The idea that simplifying the model could actually
clarify the perceptual impression is an interesting possibil-
ity that could lead to even more efficient implementations.
Towards that end, it would be helpful to investigate the pro-
posed method and other related methods piece by piece, us-
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ing listening tests to determine the perceptual importance
of the various pieces of the design.

5 CONCLUSION AND FUTURE WORK

The key advantages of the proposed method are sim-
plicity and efficiency. The proposed method can directly
process input signal as algorithmic reverb, and this signif-
icantly reduces its computational time because it does not
need to produce an impulse response after every parameter
update. The proposed method is slightly less accurate than
the baseline methods we compared it with, which repre-
sent typical existing efficient binaural simulation methods.
However, we showed that the difference in accuracy be-
tween the proposed and baseline methods in terms objec-
tive room parameters is mostly less than 1 JND, so by def-
inition, the difference is not perceptible. The update time
associated with our proposed method is an order of mag-
nitude faster and it is less complex to implement on ac-
count of having a smaller number of components. In lis-
tening tests, we found a good average agreement between
measured and simulated signals in terms of five percep-
tual qualities: naturalness, reverberance, coloration, metal-
lic character, and source width. We also found no sig-
nificant difference between the proposed method and us-
ing measured binaural impulse responses, in terms of lis-
tener’s ability to guess their location in a room based on
auditory cues alone. Therefore this method may be an
excellent choice for applications where a more efficient
method of generating perceptually plausible binaural re-
verb is needed.

Over the course of this project we identified several ar-
eas for future investigation related to this subject. First, the
average score of listeners trying to guess their location in
a room based on auditory cues alone was slightly higher
with the proposed method than with measured impulse re-
sponses. It would be truly surprising if listeners actually
localised better when listening to a rough approximation
like the proposed method than when listening to reverb
generated from real measured impulse responses. Hence,
it might be helpful to do further investigation into which
aspects of the simulation contribute most significantly to
listener’s ability to perceive their own position in a vir-
tual room. In particular, it would be especially useful to
know if the listener’s perception of location actually be-
comes clearer when insignificant details are removed from
the impulse response.

Another interesting area for further investigation is the
headphone quality issue. When deploying similar meth-
ods in user applications such as mobile gaming, the ma-
jority of users will be listening on the ear buds that come
bundled with their mobile-phone purchase. Two questions
arise related to this issue. First, to what extent can listen-
ers hear localisation cues with those low cost headphones?
If differences cannot be perceived then perhaps we should
further simplify the binaural model to avoid wasting com-
putational power on inaudible details. The second relevant
question is, can the spatial-auditory cues be exaggerated in
some way to make them easier to be perceived?

Preprint of Angus, N, Anderson, H, Chen, JM, Lui, S, Herremans, D. 2018. Perceptual evaluation of measures of spectral variance. Journal of the Audio Engineering Society. In Press.


Dorien Herremans
Preprint of Angus, N, Anderson, H, Chen, JM, Lui, S, Herremans, D. 2018. Perceptual evaluation of measures of spectral variance. Journal of the Audio Engineering Society. In Press.


PAPERS

We also discovered a discrepancy in the way the pro-
posed method models the balance of energy between early
reflections and late reverb. This is significant because it af-
fects not only the proposed method but also both of the
baseline methods presented in this paper and also most of
the existing methods that generate late reverb using either
an FDN or convolution with an impulse response that is not
specifically modeled for the particular room we are simu-
lating. In [23], we present a detailed explanation of the er-
ror and proposed methods for correcting it. After applying
the corrections proposed in that publication we repeated
the series of tests shown in section 3 and observed signif-
icant improvements. We expect that similar improvements
are possible with many other related methods.
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