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Abstract

The cryptocurrency market is highly volatile compared to traditional finan-

cial markets. Hence, forecasting its volatility is crucial for risk management. In

this paper, we investigate CryptoQuant data (e.g. on-chain analytics, exchange

and miner data) and whale-alert tweets, and explore their relationship to Bit-

coin’s next-day volatility, with a focus on extreme volatility spikes. We propose

a deep learning Synthesizer Transformer model for forecasting volatility. Our

results show that the model outperforms existing state-of-the-art models when

forecasting extreme volatility spikes for Bitcoin using CryptoQuant data as well

as whale-alert tweets. We analysed our model with the Captum XAI library to

investigate which features are most important. We also backtested our predic-

tion results with different baseline trading strategies and the results show that

we are able to minimize drawdown while keeping steady profits. Our findings

underscore that the proposed method is a useful tool for forecasting extreme

volatility movements in the Bitcoin market.
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1. Introduction

This paper studies the most popular cryptocurrency, Bitcoin, which is cur-

rently traded on more than 500 exchanges. Since Bitcoin is the first cryptocur-

rency, established in 2008 (Nakamoto, 2008), it provides the longest historical

data to study. Compared to traditional financial instruments like equities and

commodities, cryptocurrencies like Bitcoin have large, so-called ‘whale’ holders,

which consist of about 1,000 people who own around 40% of the market (Kharif,

2017). In this paper, we explore how large Bitcoin transactions from these

whales affect the market volatility. We propose a state-of-the-art deep learn-

ing Synthesizer Transformer model (Tay et al., 2020) that predicts if Bitcoin’s

volatility will be extreme the next day, based on transaction data from these

whales as well as a variety of features from CryptoQuant, including on-chain

metrics, miner flows, and more. We compare this proposed model with exist-

ing baseline models and propose a simple trading strategy to demonstrate the

practical usefulness of the predictions. In our experiments, we also analyse the

importance of the different CryptoQuant and whale-alert features that most in-

fluence volatility. An overview of our paper is provided in Figure 1. The code

of our proposed (trained) models is made available online2.

We focus on the volatility of Bitcoin as this digital asset dominates the

cryptocurrency market with the largest market cap after USDT. In finance,

volatility refers to the degree of variation of an asset’s price over time (Black

et al., 2012). Market volatility is generally considered a vital metric to evaluate

the level of risk, and thus it plays a critical role in assessing the stock market

risk and the pricing of derivative securities (Yang et al., 2020). Compared to

traditional financial instruments, the price of Bitcoin is highly volatile (Blau,

2017). In general, the Bitcoin market is currently highly speculative, and thus

more susceptible to speculative bubbles than other traditional currency markets

(Grinberg, 2012; Cheah and Fry, 2015). Bitcoin has recently also found its place

2https://github.com/dorienh/bitcoin_synthesizer
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Figure 1: Overview of the proposed study.

in portfolios to hedge against the global geopolitical crisis (Dyhrberg, 2016)

and reduce financial market uncertainty ((Platanakis and Urquhart, 2019; Fang

et al., 2019; Colon et al., 2021), hence studying risk and assessing exposure is

important to cryptocurrency investors, and it becomes important to model and

forecast the volatility of Bitcoin. In this paper, we focus on predicting future

spikes in Bitcoin’s volatility.

This study aims to gain further insights into the market conditions that

may cause drastic increases in volatility in Bitcoin markets. Our contribution is

threefold. We first thoroughly explore both CryptoQuant data and the influence

of whale transactions on volatility. Second, we propose and evaluate a state-of-

the-art Synthesizer Transformer model to predict volatility. Finally, we propose

a basic trading strategy that leverages the volatility predictions to reduce down-

ward risk. We briefly touch upon the importance of these contributions in what

follows.

First, in this study, we gather a dataset from CryptoQuant3, as well as whale

3http://cryptoquant.com
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transaction tweets from January 2018 to September 2021. The former includes

information such as exchange and miners transactions as well as liquidations and

open interest caused by trading with leverage (full feature set, see Table A.7).

We thoroughly explore the relationship between this data and Bitcoin’s next-

day volatility, and focus on discovering large market movements induced by the

ripple effects of large whale transactions and on-chain movements.

Second, we propose a Synthesizer Transformer model to perform the volatil-

ity spike prediction. The Transformer architecture has proven to be extremely

efficient for a range of tasks related to time series such as text translation

(Vaswani et al., 2017), music generation (Makris et al., 2021), emotion pre-

diction from movies (Thao et al., 2021), and speech synthesis (Li et al., 2019).

In finance, it has been shown to be efficient at stock price (Liu et al., 2019;

Zhang et al., 2022) and even stock volatility prediction (Yang et al., 2020). In

the cryptocurrency markets, we see that it has been used for Dogecoin (Sridhar

and Sanagavarapu, 2021) and Bitcoin (JAIN, 2019) price prediction. In this

work, we expand the existing literature by including CryptoQuant and whale

data (plus technical indicators calculated on this data). We then go beyond just

building a black-box model, but also explore the influence of these features on

volatility prediction through explainable artificial intelligence (XAI) techniques

with the Captum library (Kokhlikyan et al., 2020). Instead of using Vanilla

(standard) Transformer architectures, we change the typical dot product self-

attention mechanism to Synthesizer attention, which learns synthetic attention

weights without token-to-token interactions. By doing so, we optimize the atten-

tion span of the model. Recent work has shown that Synthesizer Transformers

outperform traditional Transformers. Even a simple Random Synthesizer has

shown to be 60% faster than a traditional Transformer (Tay et al., 2020). In

an experiment, we compare our proposed architecture to other configurations

and baseline traditional models like GARCH. We show that it is a useful and

reliable method for forecasting volatility in cryptocurrencies.

Finally, we explore the usefulness of our predictions by backtesting a number

of trading strategies that use the predicted volatility. In practice, investors often

5
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use volatility to trade derivative instruments such as put and call options (Ni

et al., 2008). Since it is hard to backtest such a strategy in a Bitcoin context, we

propose examples of simple trading strategies which use trading signals based

on our volatility prediction model. We explore four different strategies: buy &

hold, buy-low-sell-high, mean reversion and momentum-based. When we include

position scaling based on volatility, we notice an increase in the cumulative

returns as well as the Sharpe ratio. In future work, these strategies should

further be improved, but for now, they serve as a simple example that our

prediction model can be used to lower the downside risk of a portfolio.

The rest of this paper is structured as follows. In Section 2, we review

the existing literature, followed by a thorough description and visualisation of

the dataset that was collected. Next, the proposed Synthesizer Transformer

models are introduced in Section 4. Section 5 provides a detailed account of the

performance of the volatility prediction models compared to benchmarks, as

well as insight into the important features through XAI. The setup and results

of the backtesting experiment is described in Section 6. Finally, we provide

conclusions and suggestions for further work in Section 7.

2. Literature Review

We provide a brief overview of literature related to on-chain data, using

Twitter data for volatility and price prediction, followed by deep models for

cryptocurrency-related predictions. For a more complete overview, the reader

is referred to (Zou and Herremans, 2022; Charandabi and Kamyar, 2021; Khedr

et al., 2021; Charandabi and Kamyar, 2022).

2.1. Cryptocurrency-specific data

The cryptocurrency markets are fundamentally quite different from tradi-

tional stock markets. One of the key differences is the transparency provided

by blockchain technologies (Biswas and Gupta, 2019). Transparency is one of

the key features of Bitcoin trading as the entire trading history is available and
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traders are provided with information on the complete state of the order book,

but trading itself is pseudonymous. This transparency provides unique features

that may be useful for price and volatility prediction.

On-chain data includes information from the blockchain ledger, such as the

details of each transaction (e.g. from which wallet, to which wallet, amount, fees

paid to miners), and the difficulty of mining blocks as well as the block sizes

(Jagannath et al., 2021; Kim et al., 2022). The availability of such data can

gives us incredible insight in upcoming price movements (Zheng et al., 2021).

The transparency in the blockchain even allows us to access the entire trans-

action history ever recorded. There is no hidden volume (as in iceberg orders)

nor dark pools (Dimpfl, 2017). However, to use this data would require a huge

amount of computing power, hence, we focus on aggregated on-chain data in-

stead. CryptoQuant provides us with a wide selection of such features, and also

includes exchange data such as the amount of liquidations, as well as data on

Bitcoin miners.

Looking at existing literature, we see that utilizing this transparency allows

one to establish a trader’s edge. For instance, Kim et al. (2022) show that on-

chain data can be useful when predicting Bitcoin’s price with a self-attention-

based multiple long short-term memory model (SA-LSTM). While they provide

a list of 42 variables used, there is no ablation study or XAI method used to

identify which variables are most important. Jagannath et al. (2021) equally

show that the Ethereum price can be predicted using on-chain data and a self-

adaptive LSTMmodel. A correlation analysis using their data reveals important

correlated on-chain features to the price of Ethereum. These features include

transaction rate, supply in smart contracts, block difficulty and hash rate.

On-Chain data is not only useful for price prediction, the correlation be-

tween on-chain transaction activities and volatility has been shown by Gkillas

et al. (2021). Raheman et al. (2021)’s developed agent for crypto-portfolio man-

agement also uses on-chain data for price trend and volatility prediction. The

literature available on the effects of various cryptocurrency-specific data such as

on-chain data is still in its early shoes. In this work, we aim to not just build a
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predictive model for volatility, but also thoroughly analyse the patterns within

the data and provide an XAI interpretation of the resulting model.

In addition to CryptoQuant data, we also parsed a new dataset of whale

transactions. An overview of the literature related to this is provided in the

next subsection.

2.2. Importance of Twitter data for volatility

The CryptoQuant data offers us nice insights into aggregated on-chain data,

miner data and more. It does not, however, include transactions by so-called

‘crypto-whales’, holders of very large wallets. It is well known that cryptocur-

rencies are very volatile in nature, thus creating both outstanding benefits as

well as a huge risk to investors (Bariviera et al., 2017; Klein et al., 2018). Part

of this volatility can be attributed to large (whale) transactions and their rip-

ple effect on the market. In this work, we will be using very specific Twitter

content, namely ‘whale-alert’ tweets. The Twitter account@whale_alert, is a

third-party information provider that “monitors millions of daily cryptocurrency

transactions and publishes notable events on Twitter in near real-time” (Saggu,

2022). Scaillet et al. (2020) found a correlation between their ‘whale index’ and

high-frequency price jumps of Bitcoin.

Social media sources such as Twitter have been shown to be helpful data

sources for stock or cryptocurrency price predictions. To name a few exam-

ples, Lamon et al. (2017) study whether including sentiment analysis of news

and social media can improve models when predicting the price of Bitcoin and

Ethereum. Aharon et al. (2022) explore the relationship between two novel

Twitter-based measures of economic and market uncertainty and the perfor-

mance of four major cryptocurrencies. Zou and Herremans (2022) shows that

using BERT context embeddings of tweets with an LSTM model can improve

Bitcoin price prediction. News and social media data have also been shown to

be useful for volatility prediction, as Sapkota (2022) predicts Bitcoin volatility

based on news sentiment, and Akbiyik et al. (2021) use temporal convolutional

neural networks for Bitcoin volatility prediction with Twitter sentiment. Shen
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et al. (2019) show that the number of tweets is a major determinant of the next

day’s trading volume and realised volatility of Bitcoin. Finally, Wu et al. (2021)

reported that there is a significant Granger-causality from Twitter-based uncer-

tainty measures to Bitcoin, Ethereum, Litecoin, and Ripple prices in different

time periods. In this work, we will focus on integrating tweets by @whale_alert

into our Transformer model.

2.3. Deep neural networks for financial time series predictions

Traditional models, like Generalised autoregressive conditional heteroscedas-

ticity (GARCH)-based models) are widely used for volatility forecasting (Engle,

1982; Bollerslev, 1986). Katsiampa (2017) and Bergsli et al. (2022) study volatil-

ity forecasting for Bitcoin using GARCH and its variants. Naimy and Hayek

(2018) concluded, however, that the predictive ability of GARCH is not good

in the context of unusually high volatility, and performs better when volatility

is relatively low. Vilasuso (2002) brings up one of GARCH’s major limitations

where “its memory is sometimes not long enough to capture the persistence

of some shocks that are observed to last for a very long time”. Jiang et al.

(2022) propose a time-varying mixture model, which includes an accelerating

generalized autoregressive score (aGAS) technique into the Gaussian-Cauchy

mixture (TVM)-aGAS model for forecasting Value-at-Risk for cryptocurren-

cies. Recently, however, many researchers have turned to ever more powerful

deep learning models for financial time series prediction.

Just like in the stock market (Ding et al., 2015; Hu et al., 2021; Jiang,

2021), deep learning models have become popular tools for price prediction

in cryptocurrency markets (Zou and Herremans, 2022; Yao et al., 2018; Patel

et al., 2020; Akyildirim et al., 2021; Alessandretti et al., 2018; Khedr et al.,

2021). Looking at time series in general, recurrent neural networks, such as

long-short term memory models (LSTMs) (Hochreiter and Schmidhuber, 1997)

and gated recurrent unit (GRUs) (Chung et al., 2014) have been widely used

for forecasting. When it comes to volatility prediction, Vidal and Kristjanpoller

(2020) proposed an architecture based on convolutional neural networks (CNNs)

9
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and long-short term memory (LSTM) units to forecast gold volatility. LSTMs

were also used by Jung and Choi (2021) to forecast currency exchange rate

volatility. Finally, temporal convolutional neural networks have been used with

Twitter sentiment data to predict Bitcoin volatility (Akbiyik et al., 2021).

In recent years, with the invention of the Transformer network (Vaswani

et al., 2017), deep models for time series prediction have become even more pow-

erful. Transformers use a self-attention mechanism, to give relative focus on the

context of an element of a time series, and are better able to capture long-term

trends. In finance, we have seen the successful use of Transformer architectures

for tasks such as stock price prediction (Ding et al., 2020), stock volatility pre-

diction (Ramos-Pérez et al., 2021), and even cryptocurrency price prediction

such as Dogecoin (Sridhar and Sanagavarapu, 2021) and Bitcoin (JAIN, 2019).

The work on volatility prediction for Bitcoin with Transformers is relatively

non-existent, except for the work by Sapkota (2022) who built a model based

on Twitter sentiment data. In this work, we explore how we can use the power-

ful Transformer architecture to perform Bitcoin volatility prediction, not only

based on candlestick data, but also CryptoQuant data and whale-alert tweets.

In addition, we implement the Synthesizer Transformer, to further optimize the

attention mechanism.

3. Dataset collection and analysis

The Bitcoin market provides interesting conditions from a volatility point

of view. There is 24-hour continuous trading, 365 days a year, with a lack of

central authorities (e.g., central banks), resulting in the absence of a volatility

trading halt, and no pre-market/post-market trading as compared to the eq-

uities market (Brandvold et al., 2015). These market conditions, along with

the complete transparency of the on-chain trading data, create an interesting

opportunity for us to study the influence of different factors on volatility. To do

so, we have gathered a dataset from January 2016 until September 2021, which

consists of CryptoQuant (on-chain data and market data from cryptocurrency
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exchanges), and whale transaction tweets. We will start below by discussing

the features in this dataset and how we gathered them, and then move on to

include technical indicators and data preprocessing.

3.1. Data sources

In this section, we discuss how we gathered whale transaction data which

includes many aspects such as whale accumulation, whale dumping, miners’

inflow and outflow, as well as exchanges’ inflow and outflow.

3.1.1. Whale-alert data

Crypto ‘whales’ include some of the largest wallet holders, and hence have

a significant influence on both price and volatility (Nguyen et al., 2018). In any

volatility model, it is thus essential to include data about whale transactions.

In order to do so, we tracked the Twitter handle @whale_alert, which provides

continuous alerts as whale transactions happens. Some example tweets by this

handle are shown below:

• “997 #BTC (6,269,280 USD) transferred from #Bitfinex

to Unknown wallet”

• “11,000 #ETH (2,473,411 USD) transferred from Unknown

wallet to #Gemini”

• “6,000,000 #USDC (6,000,000 USD) burned at USDC Treasury”

Once we collected all of the tweets from 12 September 2018 (earliest avail-

able) to 18 October 2021, we filtered transactions using the hashtag #BTC and

the keyword ‘transferred’, resulting in a total of 52,787 tweets. We then wrote

a parser that uses a set of rules to obtain useful data from these tweets such as

total daily inflow and outflow of wallet to exchange, e.g. the word after ‘from’

will be the source of transaction and the word after ‘to’ will be the destination.

For all of the tweets gathered in a day, we determine the overall net transaction

outflow or inflow of wallets to exchanges in one day, resulting in the following

daily features:

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4247684

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



BTCminus The amount of Bitcoin flowing out of wallets into exchanges.

BTCplus The amount of Bitcoin flowing into wallets from exchanges.

USDminus The amount of USD flowing out of wallets into exchanges.

USDplus The amount of USD flowing into wallets from exchanges.

This data is relevant for our task: a transaction from wallet to exchange

typically indicates a bearish sentiment given that the seller is closing their Bit-

coin position and may want to exchange it into fiat currency. On the other

hand, a transaction from exchange to wallet means that a buyer is planning to

keep their Bitcoin position (or at least not exchange it into fiat) and is therefore

bullish. For the purpose of this study, we only examine Bitcoin transactions

that flow either from exchange to wallet or wallet to exchange. The total net

flow of transactions from wallet to wallet and exchange to exchange is ignored.

Figure 2 plots the BTC price volatility against the number of BTC transac-

tions measured in the daily amount of BTC that flowed to and from exchanges

as per our whale-alert tweets. We see that there are patterns where volatility

spikes during a spike in BTC transactions. There are 330 volatility spikes in

total and we see that the net daily amount of BTC that flowed to or from ex-

changes (calculated as abs(BTCplus−BTCminus)) has a Pearson correlation of

0.47 with daily BTC price volatility.

3.1.2. CryptoQuant on-chain and exchange data

CryptoQuant data provides comprehensive on-chain and market data gath-

ered from both the blockchain as well as major cryptocurrency exchanges. Ev-

ery single transaction that occurs in these markets is tracked by CryptoQuant.

CryptoQuant even keeps track of which addresses are exchanges or mining pools,

and aggregates the amount of BTC flowing between different types of entities,

such as miners, and exchanges. In this study, we use CryptoQuant’s4 API to

gather BTC related data. While a full overview of all the features we use is

4https://cryptoquant.com/docs
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Figure 2: The daily amount of net BTC that flowed to or from exchanges per day, calculated

as abs(BTCplus− BTCminus) (top). The BTC price volatility (bottom).

provided in Table A.7 based on CryptoQuant’s documentation5, we elaborate

on a few specific examples below:

miner_inflow_mean_ma7 The 7-day moving average of miner inflow gives

us insight into when whale accumulation occurs. Miners are often consid-

ered to be the original whales, as they typically hold large wallets.

mtoe_flow_total The miners-to-exchanges feature will keep track of how

much BTC miners are transferring to exchanges. Typically, the main

reason to send Bitcoin to an exchange would be to sell it, hence this can

be a bearish indicator.

miner_outflow_top10 The amount of Bitcoin that flows out of the 10 largest

Bitcoin wallets held by miners. These whale wallets will be responsible

for downward pressure and increased volatility if this variable increases.

5https://dataguide.cryptoquant.com/
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long_liquidation The amount of leveraged positions in BTC that were forced

to exit due to volatility. High values for this variable hence often go hand

in hand with high volatility.

3.2. Technical Indicators

In order to improve the prediction of our volatility prediction model, we

include some traditional technical indicators as input which have shown to be

correlated to volatility (Liashenko et al., 2020). These include Exponential

Moving Average (EMA), High-Low Spread, and Close-Open Spread. Exponen-

tial moving average indicators place a higher weighting on recent data compared

to old data, hence, they are more reactive to the latest price changes compared

to simple moving averages (SMAs). For this reason, we chose to include the 10th

day EMA of the closing price instead of its SMA. This was calculated as per

the below Equation 1 whereby n is the number of days over which the EMA at

time t for a time series X is calculated. The variable S represents a smoothing

factor, which we set to 2 for our study.

EMAt = Xt × (
S

1 + n
) + EMAt−1 × (1− S

1 + n
) (1)

A second technical indicator is the High-Low Spread. This indicator gives

insight into the intra-day total price movement. A higher value means that the

price fluctuated in either direction in one day, thus indicating a higher volatility

for that day, and vice versa.

High-Low Spread =
High− Low

Close
(2)

Finally, the Open-Close indicator provides a sense of the direction and size

of the move. If the price goes up, this indicator will be negative, and vice versa.

Close-Open Spread =
Close−Open

Open
(3)
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3.3. Data preprocessing

3.3.1. Missing values

Some of the used technical indicators, such as exponential moving average,

have a short warm-up period resulting in missing values. We can fill up the

missing values by using the first available value since this only occurs at the

very beginning of our (training) dataset.

The whale exchange tweets and derivatives data were only available from

2018 onwards. Before that period, we consider them to be zero. For leverage

and derivatives data, it is easy to assume that the missing values are 0 since

these assets were not yet available or created.

3.3.2. Standardization

Some of the distributions of the input features are skewed which would affect

the Transformer’s predictive abilities, hence we set out to standardize this. The

descriptive statistics of features in Table C.9 are standardized in Table C.10.

Depending on how the data was skewed, we used five different techniques to

standardize them as much as possible, as summarised in the latter table. We

perform no change to features that are left skewed or that have a skewness less

than 0.5 close to 0. As a default, for features with a higher right skewness

(>0.5), we will perform a log() transform. In some cases, this can result in

negative values, more specifically when the original values are <1, hence we

cannot simply apply log(). We discuss the cases in which that happened and

how we accounted for this:

• MVRV, miner_inflow_mean_ma7 and exchange_mean_ma7 have a skew-

ness of 0.875, 1.55, and 1.16. Since all three of them have values in the

range of 0.6 to 4, taking the logarithm would introduce negative values,

therefore, we took the square root.

• The features HL_sprd, miner_inflow_mean, exchange_inflow_mean, ex-

change_outflow_mean and miner_outflow_mean, have a higher maxi-

mum value (>5) and skewness (>3). Hence, we perform a slightly stronger
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transformation and take the cube root, so as the make the maximum val-

ues closer to 1.

• Both the etom_flow_mean and mtoe_flow_mean features have a high

skewness value of 17.19 and 20.48. Since their minimum value is below 1

(0.0769 and 0.298), we first add a value of 1 to them and then take the

logarithm.

• For the feature vol_future, we took the power of 1
4 , to make the maximum

value of 8.67 as close to 1 (threshold value) as possible. Given that this

is our forecast variable, it was important to standardize this as good as

possible.

3.4. Volatility

3.4.1. Calculating volatility

We calculated the daily volatility Vannualised for our dataset using the for-

mula below.

log − returns = xi = ln(
Ci

Ci−1
) (4)

Vannualised =

√√√√√ N∑
i=1

(xi − µ)2 × 365

N
(5)

where:

µ = mean of log-returns

Ci = closing price of day i

Ci−1 = closing price of day i− 1

N = number of days

As shown in Figure 3, the daily volatility in our dataset is in the range of

0.000234 to 8.67. This results in a long-tailed distribution (see Figure 4) with

a skewness of 3.35. Since statistical learning models typically work better with
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normally distributed data, we apply a transformation to the volatility data by

taking the power of 1
4 . This results in a distribution with a skewness of -0.001

and a volatility range of volatility of 0.124 to 1.72.

Figure 3: Daily Volatility before and after transformation.

Figure 4: Volatility distribution before and after transformation.

3.4.2. Volatility spikes

As shown in Figure 3, we classify days with a volatility ≥ 1.0 and with

positive log-returns of the closing price as a volatility spike. We set this volatility
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threshold to 1, because after applying the preprocessing transformation to the

volatility (taking the power of 1
4 ), all of the high volatilities with a magnitude

> 1 will still be greater than 1 even though their magnitude has shrunk, and

all of the low volatilities with a magnitude < 1 will still remain < 1. There are

232 volatility spikes in the training set and 38 volatility spikes in the validation

set. In the test set, there are 60 volatility spikes.

3.4.3. Feature correlation with volatility

To explore which of the (input) features from our dataset may be most

correlated with the next-day volatility, and thus most important for our predic-

tive model, we calculated several correlation metrics. Table B.8 shows the R2,

and the Pearson as well as the Spearman correlation coefficients. We can see

from the table that some features, such as volume, exchange_inflow_total and

High_Low_Spread show a high correlation with the volatility. This indicates

that these features will likely be important to improve our model’s predictive

power. This will later be verified by doing a Captum analysis in Section 5 to

explore the importance of each feature in our predictive model.

4. Proposed Synthesizer Transformer

In this paper, we leverage a new type of Transformer, the Synthesizer Trans-

former (Tay et al., 2021). To properly understand our architecture, we first

provide an overview of the Vanilla Transformer architecture upon which our

proposed model is based.

4.1. Transformer architecture

The architecture used in this paper draws inspiration from the Generative

Pre-trained Transformer 2 (GPT-2)’s decoder-only Transformer (Radford et al.,

2018), as shown in the Figure 5a. In this architecture, the input to the Trans-

former is a multivariate time series. The decoder takes the masked target se-

quence so that at each time step the decoder can attend to the previous i time

steps. This is illustrated in Figure 5b where the first input X1 will result in a
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prediction for the next time step: X2’. In the next step, the decoder is given

the ground truth X1 and X2 values to predict X3’ and so forth. Therefore, at

every new step, the model receives all the true inputs prior to predicting its next

output, whereby each output token contributes equally to the training loss.

(a) The proposed decoder-only Transformer ar-

chitecture inspired by (Radford et al., 2018).

(b) Transformer self-attention flows. The arrows

indicate which inputs are received for making

each prediction based on a time series X.

Figure 5: Insights into the used Transformer architecture.

For every output token, the self-attention score measures the importance of

looking at each of the tokens previously seen in the sequence, for predicting

the current token. In this traditional attention model (left in Figure 6), the

formula to calculate the attention score is provided in Equation 6, and involves

computing the dot product between the query vector (Q) and the key vector

(K) of the current token. For details, the reader is referred to Radford et al.

(2018).

Attention(Q, K, V) = softmax(
QKT

√
dk

)V (6)

whereby
√
dk represents both the dimension of the key vector K as well as

the query vector Q, and V is the value vector.
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4.2. Synthesizer Transformer

Tay et al. (2021)’s Synthesizer Transformer is able to learn attention weights

synthetically, without token-token interaction. This increases the speed of the

Transformer by up to 60%. Synthesizer Transformers can do this by removing

the notion of query-key-values in the self-attention calculation and instead di-

rectly synthesizing the attention matrix. This is done using input Xh,l ∈ RN×d

, where h is the number of heads, l is the sequence length and d is the dimen-

sionality of the model. This eliminates the need to calculate the dot product

attention as described in the previous subsection. In their original paper, Tay

et al. (2021) propose several synthetic attention variants, in this work, we im-

plemented some of the best performing variants: dense, random, both of their

factorized version, as well as a combination of dense and random with the Vanilla

Transformer attention.

Figure 6: Types of self-attention mechanisms. On the left side, the traditional self-attention

mechanism is depicted. The Dense and Random Synthesizer attention mechanism are shown

next to it. Figure inspired by Tay et al. (2021).

Dense

This type of dense synthetic attention uses a two-layer feed-forward network

with ReLU activation to replace the traditional dot product attention. The

attention matrix is simply learned by the dense neural network.

Attention(V) = Softmax(W2(σR(W1(Xh,l)))V (7)
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whereby W2 and W1 are feed-forward layers and σR is a ReLu function

Random

The random synthetic attention mechanism does not rely on pairwise token

interactions or any information from individual tokens. This way, it aims to

capture a global task-specific alignment that obtains good results across a large

number of samples. The attention is calculated as follows:

Attention(V) = Softmax(R)V (8)

whereby R is a randomly initialised N × N matrix. The weights in this

matrix are then optimized during training.

Factorized Dense and Random

The number of parameters added to the network in the above variations is

d × N and N × N respectively. When the sequence length is large, these syn-

thetic attention models can be slightly harder to train. Hence, we also included

factorized variations, which allow the models to perform competitively in prac-

tice. In addition, this form of attention also seems to help prevent overfitting.

For details on how to calculate attention the reader is referred to Tay et al.

(2021).

Mixture dense and random

All of the proposed synthetic attention variants can be mixed in an addi-

tive fashion. This results in mixture Synthesizer Transformers (mix). In this

work, we experiment by mixing a dense Synthesizer Transformer and a Vanilla

Transformer (mix dense) as well as a random Synthesizer and Vanilla Trans-

former (mix random). The resulting attention is calculated as the sum of the

attention calculated by the Vanilla Transformer and the selected Synthesizer

Transformer’s attention.
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5. Volatility prediction

5.1. Experimental setup

We conduct a thorough experiment to evaluate the performance of the

volatility prediction Synthesizer Transformer models (with different attention

mechanisms) and compare it to existing baseline models: Vanilla Transformer,

LSTM, and GARCH. We first perform hyperparameter optimization using the

validation set. The final results using the best parameters are reported on the

test set. After finding the best model, we use Captum, a PyTorch library for

model interpretability, to identify the input features that contribute most to the

prediction result.

We evaluate the models on two tasks: predicting calculated volatility (regres-

sion) and predicting volatility spikes (classification). The latter is accomplished

by converting the predicted volatility values into two classes: ‘volatility spike’

and ‘non-volatility spike’. A prediction is considered to be a volatility spike

when the predicted volatility is greater than or equal to 1 and the log-returns

were positive, otherwise we label it as ‘non-volatility spike’.

5.1.1. Training-Test Split

We train our models using the dataset described in Section 3, split into a

training, validation, and test set as described below:

• Complete dataset: 02/01/2016 to 21/09/2021 (2,090 days).

• Training set: 02/01/2016 to 02/01/2020 (1,462 days) (70%).

• Validation set: 03/01/2020 to 11/11/2020 (314 days) (15%).

• Test set: 12/11/2020 to 21/09/2021 (314 days) (15%).

There are a total of 232 volatility spikes in the training set and 38 volatil-

ity spikes in the validation set. In the test set, there are 46 volatility spikes.

We should note that the non-stationarity of financial data is a known issue

(De Prado, 2018). Ideally, we would train and test with a rolling time frame

over our entire dataset, however, due to the fact that the Transformer model

needs as much data as possible, we use an out-of-time test set.
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5.1.2. Baseline comparison models

Since we are working with a new dataset, there are no existing benchmarks

available to directly compare our results to. In order to overcome this, we

trained a few baseline models: a Vanilla Transformer, long-short term memory

model (LSTM), and GARCH.

The Vanilla Transformer is the same architecture as our proposed Synthesizer

Transformer, but uses the original attention mechanism as per Subsection 4.1.

Secondly, long-short term memory models (LSTMs) (Hochreiter and Schmid-

huber, 1997) are a type of recurrent neural network that are known for their

ability to capture long-term dependencies in time series data as well as avoid the

vanishing gradient issue (Chuan and Herremans, 2018). The full configuration

of the networks used as baseline is described in Subsection 5.2. Finally, we also

explore a statistical model often used in time series analysis: Generalized Au-

toRegressive Conditional Heteroskedasticity, or GARCH (Li et al., 2002). This

model extends the Autoregressive Conditional Heteroskedastic Models (ARCH)

model, by including a moving average component (ma) joint with the autore-

gressive component. This model is often used for volatility prediction, even for

Bitcoin (Dyhrberg, 2016). As our baseline model, we use GARCH(1,1), which

is the first order GARCH model using the ARCH library in Python 6.

5.1.3. Evaluation Metrics

We use several metrics to evaluate the volatility prediction models: root

mean square error (RMSE), F1-score, precision, and recall. The first metric

looks directly at the regression results, the others look at the resulting predicted

volatility spikes (classification). For the regression evaluation, we opted to use

RMSE as it is more sensitive to prediction errors with a large difference from

the ground truth.

When evaluating volatility spike prediction, we need to take into account

that our (test) dataset is not balanced as there are fewer volatility spikes (60)

6https://github.com/bashtage/arch
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than non-volatility spikes (254). We use precision to see how many correctly

predicted spikes (TP) the model predicted correctly out of all predicted spikes

(TP+FP).

Precision =
TP

TP + FP
(9)

Recall complements precision by measuring how many spikes the model pre-

dicted correctly out of the actual spikes.

Recall =
TP

TP + FN
(10)

In addition, the F1-score provides an integrated metric as the harmonic

mean between precision and recall. Overall, a balance of high recall and high

precision is preferred because it assumes that the model is well fitted, although

it is possible to rely solely on either recall or precision depending on the use

case.

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(11)

5.2. Hyperparameter tuning and implementation details

We set the sequence length of all Transformer models to be 64 and the

weight decay to be 1e−6. We train all the neural network models using Adam

optimizer with an initial learning rate of 1e−5. All Transformer models use early

stopping with the maximum number of epochs set to 10,000 and a patience of

200 to prevent overfitting. In addition, we use the validation set to finetune the

models’ hyperparameters as displayed in Table 1. The resulting best parameter

settings with the lowest RMSE loss on the validation set are displayed in Table 2.

5.3. Volatility prediction results

The results for predicting next-day volatility are displayed in Table 3. The

left column displays the RMSE for the regression problem (predicting next-day

volatility). We then used a threshold T , to determine if a volatility spike was
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Feature LSTM models Transformer models

Number of layers 1, 2, 4, 8 1, 2, 4, 8

Number of hidden layers 16, 32, 64, 128 NA

Number of heads NA 2, 4, 8

Batch size 4, 8, 16, 32, 64 4, 8, 16, 32, 64

Dropout 0.1, 0.2 0.1, 0.2

Table 1: An overview of the hyperparameters tested for different neural network architectures.

Model Best hyperparameter settings

LSTM batch size=4, dropout=0.2, hidden layer=64, layers=8

Transformer (V) batch size=4, dropout=0.2, heads=4, layers=2

Synthesizer (R) batch size=4, dropout=0.2, heads=4, layers=4

Synthesizer (FR) batch size=4, dropout=0.2, heads=4, layers=8

Synthesizer (D) batch size=4, dropout=0.2, heads=8, layers=4

Synthesizer (FD) batch size=4, dropout=0.2, heads=4, layers=4

Synthesizer (MD) batch size=4, dropout=0.1, heads=2, layers=4

Synthesizer (MR) batch size=4, dropout=0.1, heads=8, layers=2

Table 2: The best hyperparameters based on the validation set, for the different Transformer

models. We use R for random, F for factorised, M for mixed, D for dense, and V for Vanilla

models.

predicted. Our default value for T is 1, and for this value we show the F1-score,

precision, and recall in the table. We also included the number of True Positives

and False Negatives for a few other thresholds to gain insight in how to improve

the prediction certainty in Table 4.

From the table, we can see that many of the proposed Synthesizer Trans-

former models perform well, both in terms of the F1-score (which is consistently

above 0.377) as well as RMSE (which is close to 0.1). The baseline LSTM model

as well as the Vanilla Transformer consistently perform worse with F1-scores of

0.1714 and 0.2857 respectively. We also ran a basic GARCH(1,1) model which

does not perform very well. Since the predictions were too low, no spikes were

detected, leaving the precision and recall as zero. We can speculate that GARCH

is not the most appropriate model for our task definition. This is in line with the
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findings of Naimy and Hayek (2018), who find that GARCH is not well suited

in a high-volatility context.

When comparing the different types of Synthesizer Transformers, the dense

model has a slightly better performance, with the model with factorized dense

attention obtaining 0.101 in RMSE and 0.4625 in F1-score. In general, the

factorised models slightly outperform the non-factorized models in terms of the

F1-score.

Model RMSE F1-score Precision Recall TP FN TN FP

GARCH(1,1) 0.303 0.000 0.000 0.000 0 60 254 0

LSTM 0.095 0.171 0.600 0.100 6 54 250 4

Transformer (V) 0.095 0.286 0.500 0.200 12 48 242 12

Synthesizer (R) 0.114 0.374 0.303 0.500 30 30 185 69

Synthesizer (FR) 0.123 0.414 0.316 0.600 36 24 176 78

Synthesizer (D) 0.103 0.448 0.405 0.500 30 30 210 44

Synthesizer (FD) 0.101 0.463 0.370 0.617 37 23 191 63

Synthesizer (MD) 0.100 0.385 0.429 0.350 21 39 226 28

Synthesizer (MR) 0.101 0.400 0.400 0.400 24 36 218 36

Table 3: Model Prediction Results for predicting volatility as regression (RMSE), and as

a classification task (F1-score etc.). The True/False Positive/negative (TFPN) results for

predicting extreme volatility spikes are also displayed in the last columns. We use R for

random, F for factorised, M for mixed, D for dense, and V for Vanilla models.

We included different values for our classification threshold T and reported

TP and FN values in Table 4. We see that if we want to have a higher certainty

for true positives and a lower chance of false negatives, then setting a higher

threshold can help us achieve this. Looking at the Synthesizer (FD), a threshold

of 1.2 can help us obtain a recall of 0.85714 (6/(1+6) compared to the original

0.370. This means that we correctly predict 6 our of 7 (larger) volatility spikes.

Even with a threshold of 1.1, the Synthesizer Transformer correctly predicts

more than 50% of the volatility spikes.
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Model TP FN TP FN TP FN TP

T ≥ 1.3 T ≥ 1.2 T ≥ 1.1

GARCH 0 1 0 7 0 29

LSTM 1 0 2 5 4 25

Transformer (V) 1 0 4 3 6 23

Synthesizer (R) 1 0 5 2 18 11

Synthesizer (FR) 1 0 6 1 21 8

Synthesizer (D) 1 0 6 1 17 12

Synthesizer (FD) 1 0 6 1 21 8

Synthesizer (MD) 1 0 4 3 15 14

Synthesizer (MR) 1 0 4 3 16 13

Table 4: True positive (TP) and false negative (FN) when predicting extreme volatility spikes

with different thresholds. We use R for random, F for factorised, M for mixed, D for dense,

and V for Vanilla models.

5.4. Model explainability

To gain insight into which features are important for predicting volatility, we

used the Captum library for model interpretability. More specifically, we used

the feature ablation function (Kokhlikyan et al., 2020) to understand important

features that contribute to the prediction of each of the models. Table 5 shows

the top 3 features in terms of the absolute value of the weight attribute score

based on the feature ablation attribution algorithm for each of the models.

The absolute value of the score, informs us about the importance of this

feature for predicting the next-day volatility. Some notable recurring features

are important across different models based: taker_buy_volume, HL_spread

and volume. Looking back at the initial correlation analysis that we performed

in Table B.8, we confirm the importance of HL_spread and volume for volatility

prediction since they have the highest correlation with vol_future.

The feature called taker_buy_volume refers to the volume of perpetual swap

trades that market takers buy (and vice versa for taker_sell_volume). Being a

‘taker’ indicates someone who buys or sells at the market price. When the takers’

buy volume is much larger than the takers’ sell volume, this indicates a bullish

movement. Other important features include exchange_outflow_mean_ma7
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and exchange_transactions_count_inflow. An increase in the latter indicates

that more people are active in exchange flows which in turn indicates an increase

in interest, leading to an increase in volatility.

Looking at the features that we extracted from Twitter, we find that our

variables related to whale transactions also come out as being important with

most of them listed as the 10th or 20th most important feature. The most

important is the USDminus, which is the 4th most important feature for the

Synthesizer Transformer (FD) with an ablation score of -0.0398. This feature is

also shown as the 12th most important feature for the Synthesizer Transformer

(MD).

Model Feature 1 Score Feature 2 Score Feature 3 Score

V HL_sprd 0.09 volume 0.07 funding_rates -0.06

R taker_sell_volume 0.09 HL_sprd 0.09 taker_buy_volume 0.07

D exchange_outflow_mean_ma7 -0.07 close 0.05 HL_sprd 0.05

FR HL_sprd 0.08 taker_buy_volume 0.08 taker_sell_volume 0.08

FD close 0.07 volume 0.05 exchange_transactions_count_inflow 0.05

MD taker_buy_volume 0.08 taker_sell_volume 0.06 volume 0.06

MR volume 0.08 HL_sprd 0.06 taker_buy_volume 0.06

Table 5: The top 3 most important features of the Transformer models according to Captum’s

feature ablation function with their attribute score.

6. Trading strategy experiment

In order to evaluate the usefulness of the volatility model, we implemented

a few simple trading strategies that take signals from the volatility prediction

model, and backtested them. It is worth noting that these strategies are very

basic, and can undoubtedly be improved. They solely serve to show whether

our predicted volatility metric can help increase our risk-adjusted profits.

6.1. Backtesting strategies

We used the predicted volatility (for each model) and used it as a signal

for our strategies. For all of the strategies, we start with an initial capital of
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$10,000. Each buy signal will be 5% of the remaining capital, with pyramiding.

Trading costs were set to 0.1% for this experiment which is relatively higher

than many exchanges. The backtesting was performed using the Backtrader

library in Python7.

We test each of the strategies with and without volatility scaling for setting

the position size. As explained above, the strategies typically open a position

by buying a fixed percentage of total capital (5%). With volatility scaling,

they open a position by buying 5% of capital times volatility. This means that

when the volatility is higher, we are trying to gain an edge by using a higher

percentage of capital to open a position. Hoyle and Shephard (2018) suggest

that volatility scaling can potentially improve the Sharpe ratio of the returns.

The four strategies that we tested are described below.

6.1.1. Buy-and-hold

This baseline strategy buys Bitcoin at the start and holds it until the very

last day. Due to its constant market exposure, we can expect a higher risk,

with, during long enough certain periods, higher returns.

6.1.2. Buy-low-sell-high

An often used strategy is to buy when prices are low, and sell when they are

high. We modified this idea to buy when volatility is low (V < 1) and there is

a decrease in log-returns, and sell when a volatility spike is detected (V ≥ 1),

regardless of the price.

6.1.3. Momentum

The proposed Momentum strategy will buy when a volatility spike is pre-

dicted and there is an increase in log-returns over the past 2 days. The position

will close the next day.

7www.backtrader.com
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6.1.4. Mean Reversion

The proposed Mean Reversion strategy will buy when a volatility spike is

predicted and there is a decrease in the log-returns over the past 2 days. The

position will close the next day.

6.2. Evaluation metrics

We used the following metrics to evaluate our backtesting experiment:

Time in market - The number of days for which a position was open.

Max. Drawdown - The maximum observed loss from the maximum portfolio

value to a subsequent through value before a new maximum is attained

(in percentage).

Kelly Criterion - Determines the optimal theoretical positions size.

Daily VaR(%) - Daily Value-at-Risk. The VaR reflects the potential loss

within a day and a certain confidence level (95%).

PnL The total profit and loss in percentage.

6.3. Backtesting results

Table 6 shows the result of our backtesting experiment. The Buy and hold

strategy has a Profit and Loss (PnL) of 12.2% for almost one year of holding.

The disadvantage of such a strategy, is its constant market exposure, resulting in

a high maximum drawdown of 13.66%. Many investors may want to avoid such

exposure and instead save fiat for bargain buying opportunities. The buy-low-

sell-high strategy performs best in terms of PnL (24%), especially with volatility

scaling. This strategy, however, still has a very high time in the market, resulting

in a max. drawdown ranging from -15% to -25%. The Momentum strategy, on

the other hand, shows a very low time in the market (less than 20%), with a

PnL between 2% to 10% for the different proposed Transformer models and a

max. drawdown of less than 5%.

In general, profit increases when volatility scaling is used. The Sharpe ratio,

Kelly criterion and PnL generally all increase when using volatility scaling for

position size, compared to unscaled position sizing. The risk, however, also
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increases in terms of Daily VaR and max. drawdown. Hence, investors and

traders have to weigh the cost and benefits of volatility scaling and see whether

are they comfortable adding more risk to their strategy so as to profit more.

Time In Sharpe Max Kelly Daily

Model Market(%) Ratio Drawdown(%) Criterion(%) VaR(%) PnL(%)

buy and hold 100 0.8 -13.66 6.84 -1.27 12.2

Transformer (V)

(U) buy-low-sell-high 94.0 0.94 -10.83 8.16 -1.21 14.2

(S) buy-low-sell-high 94.0 0.96 -17.08 8.4 -2.0 24.1

(U) Momentum 2.0 0.84 -0.01 43.76 -0.01 0.148

(S) Momentum 2.0 0.84 -0.03 43.7 -0.03 0.307

(U) Mean Reversion 9.0 -0.14 -2.56 -2.4 -0.31 -0.571

(S) Mean Reversion 9.0 0.03 -5.17 0.55 -0.71 -0.006

Synthesizer Transformer (R)

(U) buy-low-sell-high 75.0 1.06 -7.76 9.37 -1.04 14.1

(S) buy-low-sell-high 75.0 1.0 -12.83 9.0 -1.82 22.9

(U) Momentum 15.0 0.94 -0.93 10.65 -0.21 2.43

(S) Momentum 15.0 1.09 -1.95 12.13 -0.48 6.58

(U) Mean Reversion 23.0 -0.03 -5.77 -0.46 -0.55 -0.395

(S) Mean Reversion 23.0 0.04 -12.92 0.55 -1.31 -0.361

Synthesizer Transformer (FR)

(U) buy-low-sell-high 70.0 0.59 -13.37 5.51 -0.98 6.70

(S) buy-low-sell-high 70.0 0.32 -23.56 3.12 -1.77 5.12

(U) Momentum 17.0 0.05 -3.26 0.72 -0.28 0.135

(S) Momentum 17.0 0.22 -7.07 2.8 -0.64 1.45

(U) Mean Reversion 27.0 0.89 -4.54 9.79 -0.7 7.68

(S) Mean Reversion 27.0 0.84 -11.76 9.44 -1.65 16.8

Synthesizer Transformer (D)

(U) buy-low-sell-high 78.0 0.51 -13.84 4.65 -0.98 5.68

(S) buy-low-sell-high 78.0 0.41 -24.03 3.8 -1.75 7.25

(U) Momentum 10.0 0.81 -1.5 12.13 -0.19 1.88

(S) Momentum 10.0 0.82 -3.11 12.27 -0.39 3.97

(U) Mean Reversion 23.0 0.79 -3.73 9.61 -0.71 6.89

(S) Mean Reversion 23.0 0.75 -8.24 9.22 -1.48 13.2

Synthesizer Transformer (FD) r

(U) buy-low-sell-high 71.0 0.19 -14.59 1.89 -1.01 1.71

Continued on next page

Table 6: Backtesting Strategy Results. We use U for unscaled (no volatility scaling) position

sizing, and S for volatility scaled position sizes.
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– continued from previous page

Time In Sharpe Max Kelly Daily

Model Market(%) Ratio Drawdown(%) Criterion(%) VaR(%) PnL(%)

(S) buy-low-sell-high 71.0 0.06 -26.18 0.59 -1.88 -0.753

(U) Momentum 13.0 1.54 -1.36 18.78 -0.23 4.55

(S) Momentum 13.0 1.56 -2.64 19.07 -0.47 9.60

(U) Mean Reversion 26.0 1.03 -3.72 11.92 -0.66 8.67

(S) Mean Reversion 26.0 1.03 -8.39 12.13 -1.46 19.2

Synthesizer Transformer (DM)

(U) buy-low-sell-high 85.0 0.76 -16.11 6.86 -1.09 9.96

(S) buy-low-sell-high 85.0 0.77 -25.36 6.95 -1.78 16.21

(U) Momentum 4.0 1.72 -0.02 48.36 -0.14 3.12

(S) Momentum 4.0 1.72 -0.05 48.37 -0.3 6.73

(U) Mean Reversion 16.0 -0.04 -6.99 -0.74 -0.58 -0.483

(S) Mean Reversion 16.0 0.01 -15.37 0.2 -1.32 -0.818

Synthesizer Transformer (MR)

(U) buy-low-sell-high 83.0 0.49 -16.12 4.4 -1.13 6.17

(S) buy-low-sell-high 83.0 0.5 -26.36 4.5 -1.93 10.0

(U) Momentum 6.0 1.97 -0.24 40.56 -0.17 4.32

(S) Momentum 6.0 1.98 -0.5 40.67 -0.35 9.36

(U) Mean Reversion 16.0 0.07 -6.97 1.2 -0.57 0.26

(S) Mean Reversion 16.0 0.16 -15.53 2.95 -1.35 1.62

Table 6: Backtesting Strategy Results. We use U for unscaled (no volatility scaling) position

sizing, and S for volatility scaled position sizes.

When looking at one of the better performing models in terms of extreme

volatility prediction of the previous section, Synthesizer FD, we notice that the

strategies based on this model consistently obtain one of the highest Sharpe

ratios. Especially, the momentum and mean reversal strategies (with volatility

position scaling), obtain a profit of 9.6% and 19.2%. In Figure 7 details are

shown of the actual trades for each of the three (scaled) strategies based on

the Synthesizer (FD) model. We notice that the most steady increase in total

portfolio value is obtained with both the momentum as well as the mean reversal

strategy, which is consistent with the results in table. Overall, while these

strategies are overly simple and have ample room for improvements, they show

the potential of using volatility predictions for risk reduction and finding trading
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(a) The buy-low-sell-high strategy.

(b) The Momentum strategy.

(c) The Mean reversal strategy.

Figure 7: Backtesting graph of the Synthesizer (FD) model. The red down arrows indicate sell

signals, and the green up arrows buy signals, and the red curve at the top shows the evolution

of the portfolio value.
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opportunities.

7. Conclusions

In this work, we investigate the usefulness of CryptoQuant data (e.g. on-

chain analytics, exchange data, miner data) as well as whale-alert tweets for

predicting Bitcoin’s next-day volatility. The dataset that was analysed in detail,

and the correlation between features and next-day volatility was explored. This

analysis uncovered the features important for volatility prediction.

We then propose a deep learning Transformer model to predict extreme

volatility spikes. In particular, we developed a Synthesizer Transformer, a

state-of-the-art architecture that is known for its computational efficiency due

to the elimination of the dot-product attention mechanism. After parameter

tuning, we performed detailed experiments wherein we examined the influence

of different synthetic attention mechanisms on the model’s performance. We

also compared the proposed models to baseline models such as LSTM, Vanilla

Transformer, and GARCH. The different Synthesizer models outperform all of

the baseline models, both in terms of volatility prediction (regression) as well

as volatility spike prediction (classification). The proposed Synthesizer Trans-

former, especially the one with factorised dense attention, manages to obtain

state-of-the-art performance when predicting volatility using CryptoQuant data

and whale-alert tweets.

To gain insight into the inner workings of our Transformer model, we used

the Captum XAI library. This allowed us to uncover important input features

such as ‘taker buy volume’ and ‘exchange outflow (ma7)’, and USDminus (USD

flowing out of wallets into exchanges, from whale-alert tweets). We thus con-

firmed the importance of both on-chain and whale-alert Twitter features for

volatility prediction.

Finally, we integrated our prediction results with several simple baseline

trading strategies. The results show that we are able to minimize drawdown

while keeping steady profits. Notably, the Synthesizer Transformer with fac-
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torized dense attention performs very well and mitigates downside risk while

maintaining a steady profit. We also notice that volatility predicted by our

models is especially powerful when used to perform volatility scaling of position

sizes, as it increases both the PnL as well as the Sharpe ratio. We should note

that these strategies are very simple, each with their own strengths and down-

falls, and that they should be improved for use in a real scenario, still, even

in this simple form, they demonstrate the power and benefits of our volatility

prediction model.

In future research, it would be useful to expand the time frame of both the

training and test data, to account for more types of markets. It may also be

useful to explore this model for other asset types and on different time scales.

Currently, our complete model source code (including trained models) is avail-

able online8, so that it may be used by anyone interested in forecasting extreme

volatility movements in the Bitcoin market.

8https://github.com/dorienh/bitcoin_synthesizer
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Appendix A. Overview of features

Variable Description

Inter-entity flow:

etom_flow_total The total amount of BTC transferred from exchanges to mining pools

etom_transactions_count_flow Number of transactions from exchanges to mining pools

etom_flow_mean Mean amount of BTC transferred from exchanges to mining pools

mtoe_flow_total The total amount of BTC transferred from mining pools to exchanges

mtoe_transactions_count_flow Number of transactions from mining pool to exchange

mtoe_flow_mean Mean amount of BTC transferred from mining pools to exchanges

Exchange flows:

exchange_inflow_total Total amount of BTC flowing into exchanges

exchange_inflow_top10 Total amount of BTC flowing into top 10 exchanges

exchange_inflow_mean Average daily transaction value for transactions flowing into exchanges

exchange_inflow_mean_ma7 7-day moving average of mean exchange_inflow_mean

exchange_outflow_total Total amount of BTC flowing out of exchanges

exchange_outflow_top10 Total amount of BTC flowing out of top 10 exchanges

exchange_outflow_mean Average daily transaction value for transactions flowing out of exchanges

exchange_outflow_mean_ma7 7-day moving average of exchange_outflow_mean_ma7

exchange_addresses_count_inflow Number of addresses involved in inflow transactions

exchange_addresses_count_outflow Number of addresses involved in outflow transactions

exchange_transactions_count_inflow Number of transactions flowing into exchanges

exchange_transactions_count_outflow Number of transactions flowing out of exchanges

exchange_minus Net amount of BTC flowing out of exchanges

exchange_plus Net amount of BTC flowing into exchanges

Miner flows:

miner_inflow_total Total amount of BTC flowing into mining pool wallets

miner_inflow_top10 Total amount of BTC flowing into top 10 mining pool wallets

miner_inflow_mean Average daily transaction value for transactions flowing into mining

pool wallets

miner_inflow_mean_ma7 7-day moving average of miner_inflow_mean

miner_outflow_total Total amount of BTC flowing out of mining pool wallets

miner_outflow_top10 Total amount of BTC flowing out of top 10 mining pool wallets

miner_outflow_mean Average daily transaction value for transactions flowing out of mining

pool wallets

miner_outflow_mean_ma7 7-day moving average of miner_outflow_mean

miner_addresses_count_inflow Number of addresses involved in inflow transactions

miner_addresses_count_outflow Number of addresses involved in outflow transactions

miner_transactions_count_inflow Number of transactions flowing into BTC miner wallets

miner_transactions_count_outflow Number of transactions flowing out of BTC miner wallets

miner_minus Net amount of BTC flowing out of miner wallets

Continued on next page

Table A.7: Description of (daily) features used in the proposed framework.
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– continued from previous page

Variable Description

miner_plus Net BTC amount of BTC flowing into miner wallets

Network indicators:

cdd Coins destroyed by flowing into exchanges

sca The sum of the days of all coins that was in a kept single wallet

Market data:

open Opening price of BTC in USD at the beginning of the day

high Highest daily price of BTC in USD

low Lowest daily price of BTC in USD

close the closing price in USD at the end of the day

volume Daily amount of BTC traded

open_interest The BTC Perpetual Open Interest from derivative exchanges

market_cap Total market capitalization of Bitcoin

funding_rates Periodic payments to traders based on the difference

between perpetual contract markets and spot prices

taker_buy_volume Volume of perpetual swap trades bought by takers

taker_sell_volume Volume of perpetual swap trades sold by takers

taker_buy_ratio Ratio of taker_buy_volume divided by taker_total_volume

taker_sell_ratio Ratio of taker_sell_volume divided by taker_total_volume

long_liquidations Long leveraged positions in BTC that are forced to exit caused by

price volatility

short_liquidations Short leveraged positions in BTC that are forced to exit caused by

price volatility

long_liquidations_usd Total Amount in USD in long leveraged positions that are forced to exit

caused by price volatility

short_liquidations_usd Total Amount in USD in short leveraged positions that are forced to exit

caused by price volatility

Market indicator:

MVRV (Market-Value-to-Realized-Value) A ratio of market_cap divided by realized_cap

Flow indicators:

exchange_whale_ratio Relative size of the top 10 inflows to total inflows of BTC to exchange

fund_flow_ratio Amount of Bitcoin that exchanges own among the amount of Bitcoin sent

to the blockchain network

MPI (Miners’ Position Index) An index to understand miners’ behavior by examining

the total outflow out of miner wallets

Twitter whale-alerts:

BTCminus The amount of Bitcoin flowing out of wallets into exchange

BTCplus Total amount of Bitcoin flowing into wallets from exchanges

USDminus Total amount in USD flowing out of wallets into exchanges

Continued on next page

Table A.7: Description of (daily) features used in the proposed framework.
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– continued from previous page

Variable Description

USDplus Total amount in USD flowing into wallets from exchanges

Technical indicators:

ema10 10-day exponential moving average

HL_sprd High-low spread.

CO_sprd Close-open spread

log_returns Logarithmic return of Bitcoin

Table A.7: Description of (daily) features used in the proposed framework.
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Appendix B. Correlation of features with volatility

Feature R2 Pearson Spearman

exchange_inflow_total 0.125 0.3528 0.287

exchange_outflow_total 0.102 0.3193 0.2744

etom_flow_total 0.0014 0.0377 0.0876

etom_transactions_count_flow 0.006 0.0777 0.1394

etom_flow_mean 0.0003 0.0172 0.0126

mtoe_flow_total 0.0035 0.0592 0.0758

mtoe_transactions_count_flow 0.02 0.1415 0.2341

mtoe_flow_mean 0.0002 0.0152 -0.0961

exchange_addresses_count_inflow 0.0758 0.2752 0.3047

exchange_addresses_count_outflow 0.0491 0.2217 0.2368

exchange_inflow_total 0.1245 0.3528 0.287

exchange_inflow_top10 0.0589 0.2427 0.2425

exchange_inflow_mean 0.0049 0.0702 -0.0047

exchange_inflow_mean_ma7 0.0007 -0.0267 -0.0751

exchange_transactions_count_inflow 0.0802 0.2833 0.3042

exchange_transactions_count_outflow 0.005 0.0711 0.0499

exchange_whale_ratio 0.042 -0.2048 -0.1863

fund_flow_ratio 0.0429 0.2071 0.1871

mpi 0.0227 0.1507 0.1716

miner_addresses_count_inflow 0.0005 -0.0232 0.1058

miner_addresses_count_outflow 0.0006 -0.0249 0.0227

miner_inflow_total 0.0018 -0.0428 -0.026

miner_inflow_top10 0.0 -0.0035 -0.0002

miner_inflow_mean 0.001 -0.0324 -0.0455

miner_inflow_mean_ma7 0.0034 -0.0586 -0.0748

miner_outflow_total 0.0016 -0.0397 -0.0185

miner_outflow_top10 0.0003 -0.0167 -0.0181

miner_outflow_mean 0.0011 -0.0334 -0.0902

miner_outflow_mean_ma7 0.0039 -0.0622 -0.1197

miner_transactions_count_inflow 0.0 0.0041 -0.0325

miner_transactions_count_outflow 0.0007 0.0268 0.013

market_cap 0.0093 0.0966 0.2006

long_liquidations 0.103 0.3209 0.1245

short_liquidations 0.0341 0.1847 0.1193

long_liquidations_usd 0.0537 0.2318 0.1358

short_liquidations_usd 0.0351 0.1874 0.1342

open 0.0108 0.104 0.2085

high 0.0122 0.1104 0.2175

low 0.0083 0.091 0.1962

close 0.0102 0.1008 0.2058

Continued on next page

Table B.8: Correlation between volatility and different input features. Values greater than

0.1 are marked in bold. 39
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– continued from previous page

Feature R2 Pearson Spearman

volume 0.1586 0.3982 0.3705

open_interest 0.0023 0.0483 0.0794

mvrv 0.0177 0.1332 0.1661

cdd 0.0222 0.1491 0.1868

sca 0.0012 0.0351 0.0816

funding_rates 0.0052 -0.0724 -0.0057

taker_buy_volume 0.0274 0.1655 0.2336

taker_sell_volume 0.0274 0.1655 0.2352

taker_buy_ratio 0.0 0.0004 -0.0032

taker_sell_ratio 0.0 -0.0004 0.0032

exchange_outflow_total 0.102 0.3193 0.2744

exchange_outflow_top10 0.0538 0.2319 0.2381

exchange_outflow_mean 0.0473 0.2176 0.206

exchange_outflow_mean_ma7 0.0253 0.159 0.1773

HL_sprd 0.3309 0.5752 0.5117

CO_sprd 0.0068 -0.0825 -0.029

log_returns 0.0098 -0.0992 -0.0254

ema10 0.0121 0.1101 0.2123

BTCminus 0.0542 0.2329 0.0649

BTCplus 0.0 0.0058 0.0248

USDminus 0.0151 0.1227 0.0671

USDplus 0.0009 0.0293 0.035

exchange_minus 0.0004 -0.0197 -0.0416

exchange_plus 0.0454 0.213 0.1104

miner_minus 0.0005 -0.0234 -0.0076

miner_plus 0.0009 -0.0304 -0.0292

Table B.8: Correlation between volatility and different input features. Values greater than

0.1 are marked in bold.

Appendix C. Descriptive statistics of features

Variable N Mean Std Minimum Maximum Skewness Kurtosis

etom_flow_total 2090 671.64 1782.41 5.31 40381.38 12.24 199.89

etom_transactions_count_flow 2090 324.09 314.13 51.00 5935.00 8.19 101.87

etom_flow_mean 2090 1.81 2.87 0.0769 71.49 17.19 374.87

mtoe_flow_total 2090 924.30 1757.58 90.25 56263.99 19.77 535.17

mtoe_transactions_count_flow 2090 408.73 344.20 46.00 5602.00 6.06 53.43

Continued on next page

Table C.9: Descriptive statistics for the features.
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– continued from previous page

Variable N Mean Std Minimum Maximum Skewness Kurtosis

mtoe_flow_mean 2090 3.27 10.28 0.298 332.92 20.48 562.53

cdd 2090 1.21e+07 1.73e+07 1.33e+06 3.97e+08 9.93 161.97

sca 2090 1.63e+10 3.10e+09 1.14e+10 2.23e+10 0.389 -1.18

open 2090 10961.95 13905.24 359.09 63555.94 2.08 3.48

high 2090 11321.22 14356.97 373.97 64894.67 2.07 3.39

low 2090 10557.51 13376.04 352.40 62016.75 2.10 3.57

close 2090 10981.18 13918.65 358.85 63572.72 2.08 3.46

volume 2090 104172.70 97245.49 3624.27 1.39e+06 3.32 25.21

open_interest 907 3.60e+09 3.53e+09 4.38e+08 1.48e+10 1.21 0.178

market_cap 2090 2.00e+11 2.62e+11 5.41e+09 1.19e+12 2.10 3.50

funding_rates 1956 0.00760 0.0250 -0.257 0.159 0.632 12.90

taker_buy_volume 2090 3.48e+09 5.89e+09 39306.00 4.71e+10 2.51 7.01

taker_sell_volume 2090 3.52e+09 5.98e+09 60220.00 4.83e+10 2.54 7.24

taker_buy_ratio 2090 0.497 0.0384 0.266 0.819 -0.310 11.04

taker_sell_ratio 2090 0.503 0.0384 0.181 0.734 0.310 11.04

long_liquidations 904 4212.18 9965.51 7.86 178839.46 11.47 178.48

short_liquidations 904 2451.05 4980.42 3.47 113129.98 13.28 272.97

long_liquidations_usd 904 7.07e+07 1.43e+08 89528.66 2.03e+09 6.73 66.14

short_liquidations_usd 904 3.89e+07 5.51e+07 35850.00 5.11e+08 3.54 17.95

MVRV(Market-Value-to-Realized-Value) 2090 1.90 0.694 0.695 4.84 0.875 0.387

exchange_whale_ratio 2090 0.410 0.0779 0.101 0.734 0.304 0.716

fund_flow_ratio 2090 0.0669 0.0327 0.000811 0.257 0.748 0.884

MPI(Miners’ Position Index) 2090 0.0906 1.28 -1.79 17.62 2.91 21.27

BTCminus 2090 498.77 2096.25 0.00 50983.00 11.09 199.47

BTCplus 2090 2110.08 8208.79 0.00 150730.00 10.95 152.33

USDminus 2090 9.33e+06 4.52e+07 0.00 1.23e+09 13.05 280.52

USDplus 2090 2.89e+07 1.40e+08 0.00 4.80e+09 21.58 671.08

ema10 2082 10924.28 13792.68 376.82 60859.06 2.08 3.43

HL_sprd 2090 0.0633 0.0491 0.00713 0.717 3.14 21.37

CO_sprd 2090 0.00301 0.0410 -0.392 0.271 -0.147 7.49

log_returns 2090 0.00217 0.0414 -0.493 0.240 -0.843 12.57

vol_future 2090 0.561 0.593 0.000234 8.67 3.34 25.92

miner_inflow_total 2090 6365.36 7371.97 617.31 69414.91 3.56 14.73

miner_inflow_top10 2090 2681.30 1934.40 516.95 23227.61 3.48 19.93

miner_inflow_mean 2090 1.64 0.958 0.103 8.71 2.10 6.54

miner_inflow_mean_ma7 2090 1.65 0.813 0.425 4.84 1.55 2.90

miner_outflow_total 2090 6501.13 8085.25 751.89 87732.70 4.03 21.22

miner_outflow_top10 2090 4329.98 3799.29 719.92 59621.15 4.99 42.45

miner_outflow_mean 2090 6.39 4.66 0.580 79.36 4.27 40.34

miner_outflow_mean_ma7 2090 6.40 3.29 1.07 34.92 2.05 10.91

miner_addresses_count_inflow 2090 5323.60 4411.59 1664.00 34392.00 3.37 11.17

Continued on next page

Table C.9: Descriptive statistics for the features.
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– continued from previous page

Variable N Mean Std Minimum Maximum Skewness Kurtosis

miner_addresses_count_outflow 2090 4556.38 5028.56 672.00 55463.00 3.30 13.13

miner_transactions_count_inflow 2090 3573.62 2035.90 1637.00 21456.00 3.40 15.18

miner_transactions_count_outflow 2090 1075.75 936.26 282.00 8833.00 3.21 13.83

miner_minus 2090 866.67 2881.88 0.00 36966.66 6.75 57.83

miner_plus 2090 730.33 2038.84 0.00 32402.41 7.71 79.15

exchange_inflow_total 2090 53086.70 28663.04 11099.87 338823.11 2.25 11.03

exchange_inflow_top10 2090 20998.42 11238.30 5053.41 134045.94 3.22 19.60

exchange_inflow_mean 2090 1.47 0.72 0.405 7.46 1.89 7.05

exchange_inflow_mean_ma7 2090 1.47 0.602 0.525 4.16 1.16 0.926

exchange_outflow_total 2090 52382.69 27237.06 11922.52 334359.32 2.17 11.36

exchange_outflow_top10 2090 25372.54 12905.31 5475.27 128484.75 2.31 10.34

exchange_outflow_mean 2090 4.94 3.01 0.435 29.57 1.75 5.97

exchange_outflow_mean_ma7 2090 4.93 2.55 1.00 15.79 1.03 0.911

exchange_addresses_count_inflow 2090 48372.63 24352.00 14052.00 234312.00 3.29 17.01

exchange_addresses_count_outflow 2090 43924.36 34987.83 8963.00 397816.00 3.97 23.97

exchange_transactions_count_inflow 2090 39649.27 21199.12 8512.00 216757.00 2.94 15.11

exchange_transactions_count_outflow 2090 12393.55 5948.59 2478.00 2.25 13.26

exchange_minus 2090 2434.06 5150.79 0.00 108428.54 6.72 98.52

exchange_plus 2090 3137.54 6151.34 0.00 89512.88 5.02 44.07

Table C.9: Descriptive statistics for the features.

Variable N Mean Std Minimum Maximum Skewness Kurtosis TR

etom_flow_total 2090 5.909 0.935 1.67 10.61 0.514 2.26 1

etom_transactions_count_flow 2090 5.61 0.516 3.93 8.69 1.10 3.73 1

etom_flow_mean 2090 0.912 0.421 0.07 4.28 1.44 6.12 5

mtoe_flow_total 2090 6.51 0.703 4.50 10.9 0.528 2.238 1

mtoe_transactions_count_flow 2090 5.84 0.563 3.83 8.63 0.0680 2.50 1

mtoe_flow_mean 2090 1.14 0.572 0.261 5.81 2.31 9.10 5

cdd 2090 15.96 0.751 14.10 19.80 0.719 0.957 1

sca 2090 23.50 0.188 23.16 23.83 0.186 -1.20 1

open 2090 8.55 1.36 5.88 11.06 -0.331 -0.644 1

high 2090 8.58 1.36 5.92 11.08 -0.338 -0.637 1

low 2090 8.51 1.35 5.86 11.04 -0.327 -0.651 1

close 2090 8.55 1.36 5.88 11.06 -0.332 -0.643 1

volume 2090 11.16 0.967 8.20 14.15 -0.482 -0.168 1

open_interest 2090 9.35 10.70 0.00 23.42 0.277 -1.91 1

market_cap 2090 25.11 1.42 22.41 27.80 -0.344 -0.645 1

funding_rates 2090 0.00711 0.0242 -0.260 0.159 0.706 13.8 0

Continued on next page

Table C.10: Descriptive statistics for all variables after postprocessing. The standardization

method (TR) used for each value is indicated in the last column with 0: no change - 1: log()

- 2: sqrt root - 3: cube root - 4: power of (1/4) - 5: +1 then log().
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– continued from previous page

Variable N Mean Std Minimum Maximum Skewness Kurtosis TR

taker_buy_volume 2090 19.61 3.40 10.58 24.60 -0.907 -0.330 1

taker_sell_volume 2090 19.61 3.38 11.00 24.60 -0.886 -0.390 1

taker_buy_ratio 2090 0.497 0.0384 0.266 0.819 -0.310 11.0 0

taker_sell_ratio 2090 0.503 0.0384 0.181 0.734 0.310 11.0 0

long_liquidations 2090 3.24 3.81 0.00 12.09 0.421 -1.64 1

short_liquidations 2090 3.07 3.60 0.00 11.64 0.407 -1.67 1

long_liquidations_usd 2090 7.39 8.52 0.00 21.43 0.312 -1.86 1

short_liquidations_usd 2090 7.23 8.33 0.00 20.05 0.306 -1.87 1

MVRV(Market-Value-to-Realized-Value) 2090 1.36 0.244 0.834 2.20 0.459 -0.153 2

exchange_whale_ratio 2090 0.410 0.0780 0.101 0.734 0.304 0.716 0

fund_flow_ratio 2090 0.0669 0.0327 0.000811 0.257 0.748 0.884 0

MPI(Miners’ Position Index) 2090 0.0906 1.28 -1.79 17.62 2.91 21.3 0

BTCminus 2090 1.18 2.76 0.00 10.84 1.99 2.11 1

BTCplus 2090 2.53 3.81 0.00 11.92 0.906 -1.05 1

USDminus 2090 2.72 6.27 0.00 20.93 1.89 1.63 1

USDplus 2090 5.47 8.11 0.00 22.30 0.830 -1.27 1

ema10 2090 8.54 1.36 5.93 11.02 -0.334 -0.65 0

HL_sprd 2090 0.379 0.0861 0.192 0.895 0.785 1.203 3

CO_sprd 2090 0.00301 0.0410 -0.392 0.271 -0.147 7.49 0

log_returns 2090 0.00217 0.0414 -0.493 0.249 -0.843 12.6 0

vol_future 2090 0.786 0.217 0.124 1.72 -0.00200 -0.0569 4

miner_inflow_total 2090 8.44 0.690 6.43 11.15 1.18 1.79 1

miner_inflow_top10 2090 7.73 0.530 6.25 10.05 0.759 0.882 1

miner_inflow_mean 2090 1.14 0.202 0.469 2.06 0.672 1.20 3

miner_inflow_mean_ma7 2090 1.25 0.294 0.652 2.20 0.786 0.990 2

miner_outflow_total 2090 8.43 0.730 6.62 11.38 1.12 1.51 1

miner_outflow_top10 2090 8.18 0.571 6.58 11.00 0.908 1.35 1

miner_outflow_mean 2090 1.80 0.366 0.834 4.30 0.827 2.50 3

miner_outflow_mean_ma7 2090 1.55 0.195 0..834 4.30 0.0365 0.698 1

miner_addresses_count_inflow 2090 8.42 0.484 7.42 10.45 1.95 4.25 1

miner_addresses_count_outflow 2090 8.13 0.653 6.51 10.92 1.47 2.12 1

miner_transactions_count_inflow 2090 8.09 0.393 7.40 9.97 1.51 2.78 1

miner_transactions_count_outflow 2090 6.76 0.600 5.64 9.09 1.02 0.776 1

miner_minus 2090 2.78 3.36 0.00 10.52 0.543 -1.41 1

miner_plus 2090 3.62 3.29 0.00 10.39 -0.0393 -1.72 1

exchange_inflow_total 2090 10.76 0.493 9.31 12.73 0.00779 0.294 1

exchange_inflow_top10 2090 9.85 0.445 8.53 11.81 0.248 1.08 1

exchange_inflow_mean 2090 1.11 0.169 0.740 1.95 0.665 0.719 3

exchange_inflow_mean_ma7 2090 1.19 0.234 0.725 2.04 0.782 -0.0268 2

exchange_outflow_total 2090 10.75 0.484 9.39 12.72 -0.0628 0.238 1

exchange_outflow_top10 2090 10.03 0.460 8.61 11.76 0.00670 0.539 1

Continued on next page

Table C.10: Descriptive statistics for all variables after postprocessing. The standardization

method (TR) used for each value is indicated in the last column with 0: no change - 1: log()

- 2: sqrt root - 3: cube root - 4: power of (1/4) - 5: +1 then log().43
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– continued from previous page

Variable N Mean Std Minimum Maximum Skewness Kurtosis TR

exchange_outflow_mean 2090 1.64 0.321 0.758 3.09 0.400 0.241 3

exchange_outflow_mean_ma7 2090 1.45 0.188 0.100 1.99 0.170 -0.435 1

exchange_addresses_count_inflow 2090 10.70 0.398 9.55 12.36 0.608 1.54 1

exchange_addresses_count_outflow 2090 10.49 0.616 9.10 12.90 0.172 0.579 1

exchange_transactions_count_inflow 2090 10.48 0.461 9.05 12.29 0.0935 0.770 1

exchange_transactions_count_outflow 2090 9.32 0.460 7.82 11.29 -0.319 0.858 1

exchange_minus 2090 3.70 4.05 0.00 11.59 0.260 -1.80 1

exchange_plus 2090 4.31 4.13 0.00 11.40 -0.00799 -1.87 1

Table C.10: Descriptive statistics for all variables after postprocessing. The standardization

method (TR) used for each value is indicated in the last column with 0: no change - 1: log()

- 2: sqrt root - 3: cube root - 4: power of (1/4) - 5: +1 then log().
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