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Abstract

Studies in affective audio-visual correspondence learning require ground-truth

data to train, validate, and test models. The number of available datasets to-

gether with benchmarks, however, is still limited. In this paper, we create a col-

lection of three datasets (called EmoMV) for affective correspondence learning

between music and video modalities. The first two datasets (called EmoMV-

A, and EmoMV-B, respectively) are constructed by making use of music video

segments from other available datasets. The third one called EmoMV-C is cre-

ated from music videos that we self-collected from YouTube. The music-video

pairs in our datasets are annotated as matched or mismatched in terms of the

emotions they are conveying. The emotions are annotated by humans in the

EmoMV-A dataset, while in the EmoMV-B and EmoMV-C datasets they are

predicted using a pretrained deep neural network. A user study is carried out

to evaluate the accuracy of the “matched” and “mismatched” labels offered in

the EmoMV dataset collection. In addition to creating three new datasets, a

benchmark deep neural network model for binary affective music-video corre-

spondence classification is also proposed. This proposed benchmark model is

then modified to adapt to affective music-video retrieval. Extensive experiments

are carried out on all three datasets of the EmoMV collection. Experimental

results demonstrate that our proposed model outperforms state-of-the-art ap-
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proaches on both the binary classification and retrieval tasks. We envision that

our newly created dataset collection together with the proposed benchmark

models will facilitate advances in affective computing research.

Keywords: Multi-task learning deep neural networks, affective audio-visual

correspondence learing, emotion-based matching, affective music-video

retrieval, EmoMV dataset collection, affective computing.

1. Introduction

Audio-visual correspondence learning aims to discover the global seman-

tic link between visual and audio modalities [1]. The first audio-visual corre-

spondence learning task was introduced in [2] as a binary classification task

to classify whether a pair of an audio clip and a video frame matches (also5

called “positive” if they are extracted at the same time from the same video) or

mismatches (i.e. “negative” if they come from different videos). Since then,

audio-visual correspondence learning has been further investigated in many

other studies [2, 3, 4, 5, 6, 7, 8], which often use various definitions of matched

and mismatched pairs of audio and visual modalities. Some notable studies are10

audio-visual localization [9, 10, 11] (which deals with localizing the objects in

videos that make sound), theme correspondence between videos and audio [12],

faces and voices correspondence [13].

Figure 1: Visualization of the process of creating the EmoMV dataset collection.
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Both music and video can deliver rich meanings, and they are commonly

used to evoke emotions [14]. By adding music to videos that convey similar15

emotions, we may perceive emotions in videos more vividly [4]. Such a combi-

nation could be useful for various applications, such as recommendation systems

that recommend music to videos such that they evoke similar emotions. This

may, for instance, allow filmmakers to add music to their videos to convey spe-

cific emotions. It may also allow advertisers to search for the perfect tune to20

accompany their videos to elicit a desired emotion in viewers. Although there

are some studies on the correspondence between music and videos in terms of

emotions [5, 4], this task remains a challenge.

The study on affective audio-visual correspondence learning, i.e. learning

the correspondence or matching in terms of emotions between audio and visual25

modalities, has surprisingly not received a lot of attention. Most datasets used

in studies on the affective correspondence between music and visual modalities

are not publicly available due to copyright restrictions. This makes it difficult

to improve on existing models, compare the performance using benchmarks,

and in general advance the field. Therefore, we believe that the construction of30

open datasets for this task is a necessity. Compared to affective correspondence

learning between music and videos, the music video emotion classification task

has been studied more [15, 16, 17], and there are more available datasets. To

tackle the problem of limited available data for affective audio-visual correspon-

dence learning, we create a collection of three datasets called Emotion-based35

Music Video Matching (EmoMV) from various sources (including music videos

collected from YouTube as well as other available datasets that were originally

used for emotion classification). In the EmoMV collection, a pair of music and

video is considered as having true correspondence (i.e. matched) if they carry

similar emotional information, otherwise, we label them as having false corre-40

spondence (i.e. mismatched). This definition is inspired by the one mentioned

in [18] for affective correspondence learning between music and images. The

first dataset (called EmoMV-A) includes 4, 914 music video segments (4, 110 for

training, 556 for validation, and 248 for testing) with a duration of 30 seconds
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each. This dataset is created by making use of music video segments (anno-45

tated with an emotion label from categories including exciting, fearful, tense,

sad, and relaxing) from the Music Video Emotion Dataset (MVED) [19]. The

second dataset (called EmoMV-B) is created from music video segments selected

from the Music Mood dataset of the AudioSet ontology [20], which was orig-

inally used for the audio classification task. The EmoMV-B dataset includes50

616 music video segments (496 for training, and 120 for validation) with a du-

ration of 10 seconds each. The third dataset (called EmoMV-C) includes 456

music video segments (360 for training and 96 for validation) with a duration

of 30 seconds each. These music video segments are split from music videos of

songs featured in movies (i.e. soundtrack music videos) that we self-collected55

from YouTube. Our three datasets are then evaluated by humans through a

survey. The process of creating the EmoMV dataset collection is visualized in

Figure 1. A snapshot of some music video segments in this collection is depicted

in Figure 2.

Figure 2: A snapshot of some music video segments in the EmoMV dataset collection.

In addition to the dataset creation, in this study, we also propose a deep60

neural network for classifying whether a pair of music and video is matched (i.e.

carries similar emotional information) or mismatched. We train our proposed

model in a multi-task learning manner, in which the binary classification (for
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the ”matched” and ”mismatched” labels) together with emotion classification

on the video and music streams is carried out simultaneously. This model is then65

modified to tackle the affective music-video retrieval task. Our proposed model

outperforms state-of-the-art approaches on the EmoMV dataset collection. Our

experimental results provide a strong benchmark for affective correspondence

learning between music and video modalities.

In summary, this study has made the following contributions:70

(1) A collection of three new datasets for affective correspondence learning

between music and video modalities is constructed.

(2) A deep neural network for binary affective music-video classification is

proposed together with its adaptation to the affective music-video retrieval task.

Extensive experiments are conducted on the newly created dataset collection,75

thus providing benchmark results.

(3) In the process of creating datasets, a multimodal music video emotion

classification model is trained on the MVED dataset. The trained network is

then applied to the other two datasets (including the Music Mood dataset of

the AudioSet ontology and our self-collected dataset of soundtrack music video80

segments) to predict emotion labels corresponding to music video segments.

Notably, the network outperforms many state-of-the-art approaches in [15, 19].

In the next section, we first provide an overview of the related studies. In

Section 3, we represent the process of creating the EmoMV dataset collection.

The user study on the accuracy of the “matched” and “mismatched” labels of-85

fered in the EmoMV dataset collection is described in Section 4. Next, our pro-

posed models for binary affective music-video correspondence classification and

affective music-video retrieval are represented in Sections 5 and 6, respectively,

together with results on our datasets followed by the conclusion in Section 7.

2. Related work90

Audio-visual correspondence learning has received considerable attention in

recent years. In addition to the review of existing datasets, in this section, we

5

Electronic copy available at: https://ssrn.com/abstract=4189323



focus on studies on affective correspondence between music and video modalities

as well as related work on audio-visual correspondence learning. Before diving

into datasets and models, we first provide a brief overview on different emotion95

representations.

2.1. Emotion representations

Many studies [21, 22, 23] have shown the influence of the multimedia such

as music and videos on human emotions. Human emotions can be represented

using continuous dimensions [24, 25] or discrete categories [26, 27]. In the contin-100

uous approach, emotions are mapped into a dimensional space [28, 29]. The Cir-

cumplex model proposed by Russell [28] is a continuous emotion representation

model which is commonly used in many affective computing studies [30, 31, 32].

Other less popular continuous emotion representation models include the Vector

model [33], and the Positive Activation - Negative Activation model [34, 35]. In105

the Circumplex model, there are two dimensions called arousal (the energy of

the emotion) and valence (the negativity or positivity of the emotion) used to

annotate emotions. There exists a third dimension called dominance, which is

often omitted because it is hard to annotate [31]. In the categorical approach,

emotions are described in terms such as happy, fearful, sad, etc., with a vari-110

ous number of emotional categories. For instance, there are six basic emotions

in [36], and 27 categories in [21]. In the Geneva Emotional Music Scales (GEMS)

model [37], the number of emotion terms is up to 45 (in GEMS-45), which is

grouped into nine different categories.

Both continuous and discrete emotion representation approaches have been115

used to represent emotions evoked from music [38, 32, 39, 40] and videos [41,

30, 31, 21]. The advantage of the continuous approach is that it can fully

model the diversity and complexity of human emotions. Its drawback, however,

is that some emotions, such as nostalgia, may be difficult to distinguish and

represent in continuous dimensions [42, 5]. This issue may be overcome by120

using a discrete representation of emotions. However, we are then faced with

the problem of defining the taxonomy. The number of emotional categories
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could be very high, for example, 305 mood tags, as in allmusic 1 (accessed on

23/03/2022). Since the discrete representation of emotions is often easier for

non-experts to comprehend, we make use of categories of emotion to construct125

matched and mismatched music-video pairs in this study.

2.2. Datasets for affective audio-visual correspondence learning

Most datasets [20, 43, 44, 45, 46, 47, 48], which are used in audio-visual

correspondence learning tasks, often stem from other studies such as action

recognition and sound classification. For affective audio-visual correspondence130

learning, there are only a few datasets, and they are also created by making use

of other available ones. Some notable datasets are IMEMNet [4], IMAC [18],

and two datasets introduced in [5]. The IMEMNet [4] and IMAC [18] datasets

are created from music and images. To the best of our knowledge, the two

datasets in [5] are the only ones dedicated to affective correspondence learning135

between music and videos. Music-video pairs are constructed through crowd-

sourcing, whereby annotators are asked about how common the emotions in the

two streams are. The first one consists of 3, 000 music-video pairs (one half

consists of matched pairs and the other half are mismatched pairs in terms of

emotions). In that dataset, the videos came from Cowen’s dataset [21] and the140

music segments were randomly selected from the Unbalanced Train set of the

Music Mood dataset of the AudioSet ontology [20]. In the second dataset in [5],

music was drawn from Spotify 2, and videos were collected from Instagram 3

and the Moments in Time dataset [49]. However, these affective audio-visual

correspondence learning datasets are not released, therefore, it is challenging to145

use them for benchmarking.

To overcome the data scarcity for affective audio-visual correspondence learn-

ing, we construct a collection of three datasets by self-collecting music videos

from YouTube as well as making use of existing datasets originally created for

1https://www.allmusic.com
2https://www.spotify.com/
3https://www.instagram.com/
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affective content analysis. While there are a wide number of video and mu-150

sic datasets for emotion prediction, to our knowledge, only a few music video

datasets have emotion annotations. Some notable music video datasets are

DEAP [17], MuVi [16], MVED [19], etc. Among them, the MVED dataset [19]

is the largest one, whereby music video segments are labelled by humans. There-

fore, we leverage the existing emotion annotations in this dataset to create155

matched and mismatched music-video pairs in our EmoMV-A dataset.

Most music video segments in the MVED dataset are from official music

videos released by artists or producers. Therefore, to diversify our collection

of datasets for affective audio-visual correspondence learning, in addition to

the MVED dataset, we have also used real-world music videos (i.e. those that160

may be both raw or edited) to create matched and mismatched music-video

pairs. Among the available music datasets with emotion annotations, the Music

Mood dataset of the AudioSet ontology [20] is large. This dataset contains

10-second music segments obtained from clips on YouTube, whereby only the

music stream is annotated by humans with mood labels (funny, happy, tender,165

sad, exciting, scary, and angry). The content of most music video segments in

the Music Mood is generated by YouTube users, which makes it different from

the MVED dataset. Therefore, we also make use of music video segments from

the Music Mood dataset to create our own dataset (i.e. the EmoMV-B dataset).

In addition to the use of available datasets, in this study, we also self-collect170

music videos of songs featured in movies that are available on YouTube and use

them as the source to create the third dataset (i.e. EmoMV-C) in the EmoMV

collection.

2.3. Affective audio-visual correspondence learning models

According to [2], a common approach to tackle the AVC task is to build175

a neural network, which includes three subnetworks: vision, audio and fusion.

The vision and audio subnetworks are used to extract visual and audio features

respectively, while the fusion subnetwork is used to combine those features to

finally decide whether a pair of visual and audio modalities are matched or
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mismatched. Some pioneer three-subnetwork models are the L3-Net [2] (for180

video frames and audio matching), and the Audio-Visual Embedding Network

(AVE-Net) (for determining the location of a sound source in an image and

cross-modal retrieval). The three-subnetwork approach [2] is also applied in

various studies on affective correspondence learning between music and images,

such as the affective correspondence prediction network (ACP-Net) in [18], and185

the model proposed in [50] that is similar to the ACP-Net.

For affective correspondence learning between music and videos, the music-

video retrieval task is often the main focus (rather than just obtaining the

“matched” and “mismatched” labels). Hence, instead of constructing a fusion

subnetwork, a cross-modal distance learning subnetwork is often used, whereby190

the distance between the visual and audio embeddings is computed. In partic-

ular, in some notable studies [5, 51] on the emotion-aware music-video retrieval

task, the proposed models consist of three subnetworks: vision, audio, and cross-

modal distance learning. In [51], the authors propose a model called Acousticvi-

sual Emotion Gaussians (AVEG) to learn the relationship among music, video,195

and emotion using the DEAP dataset [17]. The acoustic and visual features are

first preprocessed using cross-modal factor analysis [52] before being passed to

the AVEG model to obtain the predicted emotions corresponding to the music

and videos. Music and video are then matched based on the similarity between

the two predicted emotion distributions. In [5], in the vision subnetwork, the200

RGB stream of the pretrained Inflated-3D model (I3D) [53] is used as the visual

feature extractor, while a CNN structure, which is similar to the network pro-

posed in [54], is used in the audio subnetwork. The performance of the proposed

model [5] is evaluated on three tasks: emotion classification for each modality,

binary classification (on“matched” and “mismatched” labels) for music-video205

pairs, and cross-modal music retrieval.

In this study, inspired by the above affective audio-visual correspondence

learning models, we propose a deep neural network, which includes three sub-

networks (video, music and fusion), as a benchmark on the EmoMV dataset

collection. In existing studies [5, 4, 18], the focus lies on spatial features that210
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carry information about the appearance of objects appearing in videos, while

information about the motion of objects is often ignored. The use of both

spatial and temporal features carrying information about the appearance and

motion of objects appearing in videos plays an essential role in video-related

tasks, for instance, emotion prediction/classification [55, 56, 57, 58], and action215

recognition [59, 60]. Many pretrained networks such as two-stream CNN [59],

FlowNet Simple (FlowNetS) [61], I3D [53], which were originally proposed for

the action classification and detection task, can be used as feature extractors

to obtain motion features of objects appearing in videos. In [62], the SlowFast

network outperforms many state-of-the-art structures for action recognition on220

many datasets such as AVA [63], Charades [64], and Kinetics [65, 44]. The

SlowFast structure consists of the Slow pathway (to capture the semantics from

video frames), the Fast pathway (to obtain the motion), and lateral connections

to fuse them. Therefore, in the video subnetwork of our proposed model, we

apply the pretrained SlowFast network to obtain spatio-temporal features from225

the video stream.

To extract features from audio, we can use available tools (such as OpenS-

MILE [66] and YAFFE [67]), or pretrained deep neural networks (such as VG-

Gish [68] and SoundNet [43]), which have been used for many tasks such as

emotion prediction/recognition [56, 55, 69, 70, 71, 72], cross-modal audio-visual230

retrieval task in [73, 74]. In [72], the use of audio features extracted by VGGish

(with parameters pretrained on the AudioSet dataset [20]) improves the per-

formance of a speech emotion recognition model in comparison to using those

obtained by the SoundNet network [43] and the OpenSMILE toolkit [66]. The

VGGish network is also used in the cross-modal audio-visual retrieval task235

in [73, 74]. Therefore, in the music subnetwork of our proposed model, the

VGGish structure pretrained on the AudioSet [20] dataset is used to extract

audio features from the music stream. These extracted feature vectors are also

released together with our newly created datasets.

To embed the audio and visual features into a common representation space,240

stacks of fully-connected layers are mainly applied in affective correspondence
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learning between music and videos [18, 5]. In this study, inspired by the pro-

jection heads (originally applied on the textual and visual features) in the Con-

trastive Language-Image Pretraining (CLIP) model [75], we construct music and

video projection heads to embed the audio and visual features into a common245

representation space. In addition, to combine the audio and visual embeddings,

there are many fusion techniques. Among them, the compact bilinear pool-

ing [76] is commonly used to capture the complex associations between two

modalities by enabling a multiplicative interaction between all the elements of

two component vectors. This fusion technique is applied in many studies to com-250

bine, for example, visual and audio features for emotion recognition [77, 78], or

textual and visual features for visual question answering [76]. Therefore, the

multimodal compact bilinear pooling [76] is applied in this study to fuse vi-

sual and audio embeddings, resulting in our model to outperform many other

approaches.255

In addition to tackling the binary affective music-video correspondence clas-

sification task, we also modify our proposed model to adapt it to the affective

music-video retrieval task. Particularly, the distance between the visual and

audio embeddings is computed, instead of fusing the embeddings together to

make a classification. Multi-task models have been introduced in affective com-260

puting, and have shown promising results. For instance, in [79], a multi-task

attention network is proposed to predict emotions (represented in valence and

arousal dimensions) and recognize facial expressions at the same time. In [80],

a multi-task framework is also developed to simultaneously perform emotion

regression and classification. In this study, we train our proposed model in a265

multi-task learning manner, whereby binary classification (for “matched” and

“mismatched” labels) together with emotion classification (on the video and mu-

sic streams) are simultaneously carried out. A similar approach is also applied

to the retrieval task.
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Table 1: Number of music video segments corresponding to each emotion label in the reduced

MVED dataset (i.e. without the “neutral” label).

Reduced MVED dataset Exciting Fearful Tense Sad Relaxing Total

Train set 843 828 652 730 1,057 4,110

Validation set 102 111 84 111 148 556

Test set 50 50 50 50 50 250

3. Dataset creation270

Due to the scarcity of publicly available large-scale datasets for affective

correspondence learning between music and videos, we have created the EmoMV

dataset collection. The process of creating each of the three datasets in this

collection is described in detail below.

3.1. EmoMV-A dataset275

In this study, the first dataset of the EmoMV collection (called EmoMV-A)

is created by making use of music video segments from the MVED dataset [19].

The MVED dataset was originally created for the emotion classification task. To

our knowledge, it is also the largest available dataset for this task with human-

labelled emotions. The MVED dataset includes 5743 music video segments280

(with a duration of 30 seconds each) annotated with emotion labels (exciting,

fearful, tense, sad, relaxing, and neutral). According to [19], the “neutral”

label represents a mix of stimuli from the other five emotions, therefore, we

exclude the segments annotated with this label. For convenience, we refer to

the MVED dataset without the “neutral” music video segments as the reduced285

MVED dataset. This term will be used throughout this paper. After discarding

the “neutral” music video segments, the number of music video segments re-

maining from the train, validation, and test sets of the reduced MVED dataset

is 4110, 556, and 250 respectively. The number of music video segments corre-

sponding to each emotion label is shown in Table 1.290
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“Matched”/ “Mismatched” labelling According to [19], in the MVED

dataset, in the emotion annotation process, emotion labels are assigned to 30-

second music video segments based on both visual and audio clues. For example,

exciting music videos often contain smiling faces, dancing scenes, colouring ef-

fects, etc. in the video stream, and high pitch, large pitch variations, etc. in295

the music stream. In contrast, sad music video segments often contain slow-

changing scenes, dark background, tears on faces, etc. in the video stream, with

a slow tempo, soft music, etc. in the music. We refer readers to paper [19] for

more detail on the emotion annotation process for the MVED dataset. Thanks

to this carefully directed annotation process, we may consider the music and300

video streams from each music video segment taken from the MVED dataset as

matched in terms of emotions. Therefore, the main challenge when creating the

EmoMV-A dataset is how to create music-video pairs that are mismatched in

terms of emotions. Our goal is to create a dataset consisting of music videos that

are either matched or mismatched in terms of the emotions conveyed by their305

music and video streams. Therefore, given music video segments with emotions

labelled on the music and video streams, the process of creating matched and

mismatched music-video pairs is described as follows:

Step 1: We first divide each set (i.e. the train set, validation set, and test

set) in the reduced MVED dataset into two clusters such that the number of310

music video segments corresponding to each emotion label appearing in one

cluster is equal to that in the other. In particular, from the training set of the

reduced MVED dataset as shown in Table 1), 843 exciting music video segments

are divided into two subsets with 422 and 421 segments respectively; 828 fearful

segments are divided into two subsets of 414 segments each, etc. The first cluster315

will form our matched samples, while the second cluster will be used to create

our mismatched ones.

Step 2: The music video segments in the first cluster are kept intact, and are

later used as matched music-video pairs. Those from the second cluster are used

to create mismatched music-video pairs, in which a video stream assigned with320

this emotion label is paired with a music stream that is labelled with another

13

Electronic copy available at: https://ssrn.com/abstract=4189323



Figure 3: Number of the mismatched music-video pairs corresponding to each emotion label

in the train (top left), validation (top right), and test (bottom) sets in the EmoMV-A dataset.

emotion. For doing so, we first create eight pairs of (mismatched) emotion

labels: exciting – fearful, exciting – tense, exciting – sad, exciting - relaxing,

fearful - sad, fearful – relaxing, tense – sad, and tense – relaxing. Note that

according to [19], in the MVED dataset, the music video segments annotated325

with fearful or tense labels have different visual elements but possess the same

audio components such as high pitch and high rhythmic variation. Similarly,

those labelled with sad or relaxing emotions have common audio characteristics

such as slow tempo and soft music. Therefore, the two emotion pairs (fearful –

tense, and sad – relaxing) are not used.330

Step 3: Based on the eight pairs of emotion labels, mismatched music-video

pairs are constructed from the music video segments in the second cluster. In

particular, an exciting video is paired with fearful music, and vice versa; an

exciting video is paired with tense music, and vice versa, etc. The music video
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Figure 4: Visualization of the number of matched music video segments corresponding to each

emotion label in the EmoMV-A dataset.

segments (belonging to the second cluster), which are redundant after this mis-335

matching process, are originally the matched ones. Therefore, they are added

to the first cluster.

As a result, our train set consists of 1, 902 mismatched music-video pairs,

and 2, 208 matched ones. There are 310 matched and 246 mismatched pairs in

the validation set. The number of matched and mismatched pairs in the test340

set is 126 and 124, respectively. However, to make the test set balanced with

regard to the number of matched and mismatched pairs, we randomly exclude

two matched music-video pairs (i.e. two music video segments) from this set.

Hence, the final test set consists of 248 music-video pairs in total, whereby one

half is matched, and the other half is mismatched. We visualize the number of345

mismatched music-video pairs with the corresponding emotion labels assigned to

their video and music streams in Figure 3. The number of matched music-video
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pairs is plotted in Figure 4.

3.2. EmoMV-B dataset

To create the EmoMV-B dataset, we made use of the Music Mood dataset350

(of the AudioSet ontology), which consists of 10-music segments derived from

music clips on YouTube. In the Music Mood dataset 4 (accessed on 16/10/2021),

only the music stream is human-labelled with mood tags (funny, happy, tender,

sad, exciting, scary, and angry), and many music segments are assigned multi-

ple emotion tags. This dataset includes the Unbalanced Train set (consisting of355

an unbalanced number of music segments corresponding to each mood label),

the Balanced Train set (consisting of an identical number of music segments

corresponding to each mood label), and the Balanced Validation set, whereby

only the music emotion annotations in the Balanced Train set (including 421

music segments) and the Balanced Validation set (consisting of 420 music seg-360

ments) are verified by the authors. Those in the Unbalanced Train set are

not verified, although this set is large with 1338 happy, 1035 funny, 1650 sad,

3971 tender, 5518 exciting, 985 angry, and 1617 scary segments. Most of the

YouTube music clips, from which the Music Mood dataset is created, are user-

generated. Hence, the use of this dataset diversifies our collection of datasets365

for the affective audio-visual correspondence task.

3.2.1. Data preprocessing

After downloading the music videos from YouTube, we manually validate

every single music segment in the Music Mood dataset with the aim to filter

out the footage of video games, as well as those that contain only some unrelated370

images in the video stream, etc. The music segments that are of low quality

or mainly contain speech are also taken out. Due to these reasons, in addition

to the unavailability of many given YouTube links, we obtain only 4487 music

video segments in total.

4https://research.google.com/audioset//ontology/music_mood_1.html
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3.2.2. Emotion labelling375

In the Music Mood dataset, the emotion annotation process was carried out

on the music stream only, while the video stream was not taken into account.

Therefore, the emotion annotation provided in the Music Mood is not suitable

for our goal. Emotion labelling requires a large number of annotators to reduce

its subjectivity. Due to the high cost of the emotion annotation by humans,380

in this study, we apply a model (with parameters trained on another dataset)

as an automatic tagging tool to assign emotion labels to the 4, 487 music video

segments (filtered from the Music Mood dataset) as follows:

Emotion classification network: The Feature AttendAffectNet model [55]

provides high accuracy in predicting the emotions of movie viewers represented385

in (continuous) valence and arousal values. According to [55], the model input

can be either audio features or visual ones, or both; and the model performs

best when both visual and audio features are used. Therefore, we first modify

the Feature AttendAffectNet model by changing its last fully-connected layer

from one neuron to six neurons followed by a softmax layer. This adaptation al-390

lows it to tackle the emotion classification task on the MVED dataset, whereby

music video segments are annotated with one of six emotions (including excit-

ing, fearful, tense, sad, relaxing, and neutral). For convenience, this model is

called “modified Feature AttendAffectNet” throughout this paper. According

to [55], the ResNet-50 [81], FlowNetS [61], and RGB-stream I3D networks [53]395

pretrained on the ImageNet dataset [82], the Flying Chairs dataset [61], and

the Kinetics dataset [44], respectively, are used as feature extractors to ob-

tain the visual features from the video stream. To obtain the audio features,

the authors in [55] apply the OpenSMILE toolkit (with its “emobase2010” con-

figuration, which is mainly for speech-related low-level feature extraction) and400

VGGish [68] pretrained on the AudioSet dataset [20]. The MVED dataset con-

sists of music video segments rather than speech, therefore, in this study, we

apply all of the aforementioned feature extractors, except for the OpenSMILE

toolkit, to obtain visual and audio features from music video segments in the
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MVED dataset.405

Training details: We train, validate, and test the modified Feature AttendAf-

fectNet structure on the MVED dataset. We consider three contexts, in which

the model input either includes visual features only, audio features only, or both.

In particular, the model is trained using the Adam optimizer, and the maximum

number of epochs is 200. The batch size and the learning rate are 30 and 0.0005,410

respectively. The early stopping is applied with the patience parameter of 30.

The cross-entropy loss is used in the training process, and the experiments are

conducted in Python 3.6 using a NVIDIA GTX 1070 GPU.

Table 2: Performance of the modified Feature AttendAffectNet model on the test set of the

MVED dataset.

Models Accuracy(%) F1-score AUC

Feature AAN (video) 80.0 0.799 0.958

Feature AAN (music) 82.33 0.786 0.945

Feature AAN (music video) 86.67 0.866 0.982

Separable Slow-Fast network [15] 77.00 0.77 0.940

MVF (video, music, facial expression) [19] 74.00 0.73 0.926

Model performance on the MVED dataset : The performance of the modified

Feature AttendAffectNet model on the MVED dataset is evaluated based on the415

classification accuracy, F1-score [83], the confusion matrix [84], and the Area

Under the Receiver Operating Characteristics (AUC) [85]. As shown in Table 2,

when using only visual features as the model input, the classification accuracy

is 80.0%. The accuracy increases to 82.33% when using only audio features

as the model input. When using both visual and audio features, the model420

reaches the highest classification accuracy of 86.67%. Notably, the modified

Feature AttendAffectNet outperforms the state-of-the-art approaches including

the Separable Slow–Fast network in [15] and the MVF model in [19] (as shown

in Table 2), even when only visual features are used as its input. In addition to

the prediction accuracy, we also visualize the confusion matrix in Figure 6 and425

the area under the ROC as shown in Figure 5.
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Figure 5: The ROC curve for emotion classification on the MVED dataset using the modified

Feature AttendAffectNet with video only, music only, and both as the model input.

Table 3: Number of music video segments (from the filtered Music Mood dataset) that corre-

spond to emotion labels predicted by the modified Feature AttendAffectNet.

Exciting Fearful Tense Sad Relaxing Neutral Total

225 56 72 268 126 85 832

Automatic emotion tagging To obtain emotion labels for music video

segments in the filtered Music Mood dataset, we first extract visual and audio

features from the video and music streams in each segment (by using feature

extractors consisting of the pretrained ResNet-50, FlowNetS, RGB-stream I3D,430

and pretrained VGGish networks as mentioned above). We then feed only vi-

sual features, only audio features, and both of them to the modified Feature

AttendAffectNet (which is modified for three input contexts: video only, audio

only, and both, respectively) with parameters previously trained on the MVED

dataset. Only music video segments for which the same emotion label is pre-435

dicted for their video stream, music stream, and both, are chosen. As a result,
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Figure 6: The confusion matrix when the modified Feature AttendAffectNet is applied to

classify emotions for videos (top left), music (top right), and music videos (bottom).

we obtain a set of 832 music video segments as shown in Table 3.

3.2.3. EmoMV-B dataset creation

From the set of 832 music video segments obtained from the above automatic

emotion tagging process as shown in Table 3, we discard those with the “neutral”440

label. As a result, we obtain 747 music video segments in total (225 exciting, 56

fearful, 72 tense, 268 sad, and 126 relaxing). We first divide these music video

segments into two sets with a proportion of 80% and 20%, respectively. These

sets are then used to create the train and validation sets, respectively.

Similar to the creation of the EmoMV-A dataset, each of these sets is then445

divided into two clusters, such that the number of music video segments cor-

responding to each emotion label appearing in one cluster is equal to that in
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Figure 7: Number of mismatched music-video pairs with the corresponding emotion labels

assigned to their music and video streams in the training (left), and validation (right) set in

the EmoMV-B dataset.

the other. One cluster is used to create mismatched music-video pairs, while

the other is kept intact. The process of creating mismatched music-video pairs

is the same as that described in Subsection 3.1. As a result, the number of450

mismatched music-video pairs obtained in the train and validation sets is 248

and 60, respectively. The number of the mismatched music-video pairs with

the emotion labels predicted for their video and music streams is visualized in

Figure 7. With the aim to create a dataset that is balanced in the number of

matched and mismatched music-video pairs, 248 and 60 music video segments455

from other clusters (that were originally kept intact) are used as the matched

music-video pairs for the training and validation sets, respectively. The number

of matched music-video pairs corresponding to each emotion label in the train

and validation sets of the EmoMV-B dataset is illustrated in Figure 8. In a

nutshell, the EmoMV-B dataset consists of 616 music video segments (496 for460

the train set and 120 for the validation set), and these sets are balanced in the

number of matched and mismatched pairs.

3.3. EmoMV-C dataset

This dataset is created from the self-collected music videos of songs featured

in movies (also called soundtrack music videos). Hence, many of them contain465
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Figure 8: Visualization of the number of matched music-video pairs corresponding to each

emotion label in the train and validation sets in the EmoMV-B dataset.

some movie scenes, which makes the EmoMV-C dataset different from the two

previous ones. The creation process of this dataset is explained below.

3.3.1. Data collection

We first collect movie titles by using Google with different search terms, for

example, ”best movies”, ”happy movies”, ”sad movies”, etc. We then search470

the titles of songs featured in the movies. These song titles are then used as

keywords to find the corresponding music videos on YouTube. As a result, we

collect 235 soundtrack music videos. In addition, we also collect another 119

soundtrack music videos based on the song titles given in [86]. The collected

354 soundtrack music videos are split into 2688 music video segments with a475

duration of 30 seconds each.
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3.3.2. Emotion labelling

Similar to the creation of the EmoMV-B dataset, we apply feature extrac-

tors (i.e. the pretrained ResNet-50, FlowNetS, RGB-stream I3D, and VGGish

networks) on the 2688 music video segments in order to obtain visual and audio480

features from their video and music streams. The extracted feature vectors are

then passed to the modified Feature AttendAffectNet model (pretrained on the

MVED dataset for emotion classification). We select the music video segments

that have the same predicted emotion label regardless of whether the visual

features only, or audio features only, or both are used as the model input. As a485

result, we obtain 663 music video segments (consisting of 189 music video seg-

ments labelled as “exciting”, 42 “fearful”, 69 “tense”, 148 “sad”, 198 “relaxing”,

and 17 “neutral”) that satisfy this condition. These 663 music video segments

originate from 336 music videos . Among these segments, many come from the

same original music videos, therefore, they might contain repeated or similar490

content. To avoid this, we use no more than two segments from the same origi-

nal music video and remove the redundant ones. As a result, after applying such

filtering criteria, we obtain 570 music video segments (including 167 “exciting”,

35 “fearful”, 53 “tense”, 127 “sad”, 174 “relaxing”, and 14 “neutral”) as shown

in Table 4.495

Table 4: Number of music video segments (originating from soundtrack music videos) obtained

after applying filtering criteria.

Exciting Fearful Tense Sad Relaxing Neutral Total

167 35 53 127 174 14 570

3.3.3. EmoMV-C dataset creation

In this step, after discarding the segments with the “neutral” label, we obtain

556 music video segments (originated from 325 soundtrack music videos) in

total. These segments are divided into two sets, with proportions of 80% and

20%, which are later used to create the train and validation sets, respectively.500
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Note that we ensured that the music video segments belonging to the same

original music videos appear in one of these sets only. By doing so, we prevent

information from being leaked from the train set into the validation set.

Figure 9: Number of mismatched music-video pairs corresponding to each emotion label in

the training (left), and validation (right) sets in the EmoMV-C dataset.

We then divide each set into two clusters such that the number of music

video segments corresponding to each emotion label appearing in each cluster505

is equal to that of the other. Similar to the process of creating the two previous

datasets, one cluster is used to create the mismatched music-video pairs, while

the other half is kept intact. In this dataset, the process of creating mismatched

music-video pairs is the same as the one described in Subsection 3.1. As a result,

we obtain 180 and 48 mismatched music-video pairs in the train and validation510

sets, respectively. A matrix of the number of mismatched music-video pairs

together with the corresponding emotion labels assigned to their video and

music streams is visualized in Figure 9. Similar to the EmoMV-B dataset, with

the aim to create a dataset that is balanced in the number of matched and

mismatched music-video pairs, 180 and 48 music video segments from other515

clusters (that are originally kept intact) are used to form the matched music-

video pairs for the training and validation sets, respectively. We also illustrate

the number of matched video-music pairs corresponding to each emotion label

in the training and validation sets of the EmoMV-C dataset in Figure 10. In

short, the EmoMV-C dataset consists of 456 music video segments, with 360520
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Figure 10: Visualization of the number of matched music video segments corresponding to

each emotion label in the EmoMV-C dataset.

segments used for training and 96 segments for validation. Each set is balanced

in terms of the number of matched and mismatched pairs.

4. Dataset evaluation

We conduct an online survey to evaluate the accuracy of the labels in our

datasets, whereby the “matched” and “mismatched” labels as well as the emo-525

tion labels assigned to the music and video modalities are considered. The

dataset verification process is described below.

4.1. Survey design

From each dataset in the EmoMV collection, we randomly select ten samples

(i.e. music video segments) including five “matched” and five “mismatched”. As530

a result, 30 samples in total are used in this survey. Note that in our datasets,
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the music and video streams in each music video segment are labelled with one

of five emotions (exciting, fear, tense, sad, and relaxing). The proportion of

samples (among the 10 samples selected from each dataset) corresponding to

each of these emotion labels is identical.535

In our survey, participants are asked to listen to and view music video seg-

ments, and rate how well the music and video streams in each sample match

in terms of emotions and their general alignment. They can indicate their an-

swers on a 5-point Likert scale (“very poor”, “poor”, “moderate”, “good”, and

“very good”). Participants are also asked which emotions (among the given540

five emotions) are conveyed in the music and video streams of each sample.

Each participant is asked to watch all 30 samples. A snapshot of a sample with

questions used in our survey is visualized in Figure 11.

4.2. Survey results

A total of 22 subjects participated in our survey. As a result, we obtained545

660 ratings across all 30 samples (i.e. 220 ratings for ten samples from each

dataset).

4.2.1. EmoMV-A dataset

As shown in Table 5, for the matched samples selected from this dataset,

the proportion of “good - very good”, “moderate”, and “poor - very poor”550

ratings for the question related to the level of matching in terms of emotions

is 77.27%, 14.55%, and 8.18%, respectively. For the question about the gen-

eral alignment between music and video streams, this proportion is 79.09%,

12.73%, and 8.18%, respectively. For the mismatched samples selected from

the EmoMV-A dataset, the proportion of “good - very good”, “moderate”, and555

“poor - very poor” responses for the emotion matching level is 6.36%, 10.91%,

and 82.73%, respectively. These values for the general alignment between music

and video streams are 9.09%, 12.73%, and 78.18%, respectively. This confirms

that the matched segments are perceived as more matched, and the mismatched

segments are mostly perceived as mismatched.560
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Figure 11: A snapshot of a sample with questions used in our online survey.

Participants also indicated the emotions they thought are conveyed in the

music stream. The proportion of ratings on the music stream for which the

emotion label (originally from the MVED dataset [19]) is the same as the one
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obtained in our survey is 57.27%. For the video stream, this proportion is

64.55%. In general, these overlapping values are not high, even though both565

annotation processes are carried out by humans. This might be due to the fact

that the emotion is subjective.

Table 5: Proportion of ratings for samples selected from the EmoMV-A dataset.

EmoMV-A dataset Ratings (%)

Very poor - Poor Moderate Good - Very good

Matched Matched in emotions 8.18 14.55 77.27

samples General alignment 8.18 12.73 79.09

Mismatched Matched in emotions 82.73 10.91 6.36

samples General alignment 78.18 12.73 9.09

4.2.2. EmoMV-B Dataset

The proportion of “good - very good”, “moderate”, and “poor - very poor”

ratings with regards to the matching level between the emotions conveyed in570

the music and video streams, is 78.18%, 10.91%, and 10.91%, respectively, in

the EmoMV-B dataset. These values with regards to the general alignment

between music and video streams are 80.91%, 12.73%, and 6.36%, respectively,

as shown in Table 6. For the mismatched samples selected from this dataset,

the proportion of “good - very good”, “moderate”, and “poor - very poor”575

responses with regards to the emotion-matching level is 25.45%, 12.73%, and

61.82%, respectively. These values for the general alignment between the two

streams are 23.64%, 15.45%, and 60.91%, respectively. This rate is slightly below

the one obtained on the EmoMV-A dataset, and we suspect this is because the

matched and mismatched music-video pairs were constructed based on emotion580

labels predicted from a model versus those annotated by humans.

Looking at the emotion tags provided by the participants for the music

stream, the proportion of emotion labels that are the same as the ones offered in

our dataset is 77.27%, while this proportion for the video stream is 47.27%. This
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difference may be explained by the construction of the EmoMV-B dataset using585

music video segments from the Music Mood dataset. According to [14], music

is effective in evoking emotions in viewers. Therefore, the emotions conveyed in

the music stream might be more vivid than the ones carried in the video stream.

Table 6: Proportion of ratings for samples selected from the EmoMV-B dataset.

EmoMV-B dataset Ratings (%)

Very poor - Poor Moderate Good - Very good

Matched Matched in emotions 10.91 10.91 78.18

samples General alignment 6.36 12.73 80.91

Mismatched Matched in emotions 61.82 12.73 25.45

samples General alignment 60.91 15.45 23.64

4.2.3. EmoMV-C Dataset

For the matched samples selected from the EmoMV-C dataset, the propor-590

tion of “good - very good”, “moderate”, and “poor - very poor” ratings with

regards to the emotion-matching level is 91.82%, 4.54%, and 3.64%, respec-

tively. The rate with regards to the general alignment between the two streams

is 88.18%, 8.18%, and 3.64%, respectively, as shown in Table 7. For the mis-

matched samples selected from this dataset, the proportion of “good - very595

good”, “moderate”, and “poor - very poor” responses on the emotion-matching

level is 11.82%, 13.64%, and 74.54%, respectively. This proportion with regards

to the general alignment between music and video streams are 10.91%, 7.27%,

and 81.82%, respectively. These rates show that the matched and mismatched

samples are mostly differentiated by humans.600

In addition, for the music stream, the overlapping rate between the labels

provided by the participants in our survey and the ones offered in our dataset

is 86.36%. For the video stream, this rate is 53.18%. Similar to the EmoMV-B

dataset, this difference might be because the music is more effective in conveying

emotions to listeners.605
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Table 7: Proportion of ratings for samples selected from the EmoMV-C dataset.

EmoMV-C dataset Ratings (%)

Very poor - Poor Moderate Good - Very good

Matched Matched in emotions 3.64 4.54 91.82

samples General alignment 3.64 8.18 88.18

Mismatched Matched in emotions 74.54 13.64 11.82

samples General alignment 81.82 7.27 10.91

5. Binary affective music-video correspondence classification

5.1. Proposed model

Due to the limit in the number of available datasets together with bench-

marks on affective audio-visual correspondence learning, in addition to creat-

ing three new datasets, we propose a deep neural network to classify whether610

music-video pairs are matched or mismatched in terms of emotions. The three-

subnetwork approach has been proved to be effective in many audio-visual cor-

respondence learning tasks. Following this approach, we can leverage pretrained

deep neural networks (that are originally developed for action recognition and

audio classification) to extract visual and audio features from video and music615

streams, respectively. Video and music projection heads are then applied to

embed the visual and audio features into a common representation space. The

obtained visual and audio embeddings are then fused, and a binary classification

task is performed to predict “Yes” (i.e. “matched”) or “No” (i.e. “mismatched”)

as illustrated in Figure 12. In addition, following the multi-task learning ap-620

proach, we append the music and video branches (for music and video emotion

classification) to the music and video subnetworks, respectively. Components

of our proposed model are described in detail below.

Video subnetwork In the video subnetwork, we make use of the SlowFast

network [62] pretrained on the Kinetics human action video dataset [44] (except625

for its last classification layer) to extract the spatial and temporal features
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Figure 12: Our proposed model. The extracted visual and audio features are passed to

fully-connected layers for dimensionality reduction before being projected into a common

representation space. The visual and audio embeddings are then fused before being fed into

other fully-connected layers, from which a binary classification task is carried out.

Figure 13: Projection head used to project visual and audio features into a common repre-

sentation space.

that carry both appearance and motion information about objects appearing

in the video stream. As a result, we obtain a 2, 304-dimensional feature vector

from each music video segment. This feature vector is then fed to a fully-

connected layer of 64 neurons for dimensionality reduction (as visualized in630

Figure 12) before being passed to the video projection head. This projection

head consists of fully-connected layers of 64 neurons each, the Gaussian error

linear unit (GELU) [87], a dropout ratio of 0.5, a residual connection, and L2-

normalization, as described in Figure 13.

Music subnetwork In the music subnetwork, we apply the VGGish net-635

work [68] pretrained on the AudioSet ontology [20] to extract a 128-dimensional

feature vector from each 0.98-second music segment (which is at a sampling rate

of 16 kHz with signed 16-bit PCM encoding and a mono channel). We then com-
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pute the element-wise average of the obtained feature vectors extracted from all

0.98-second music segments from each music video segment. As a result, we640

obtain a 128− dimensional vector representing the music stream of each mu-

sic video segment. Similar to the video subnetwork, this feature vector is then

passed to a fully-connected layer of 64 neurons for dimensionality reduction. A

music projection head, which has the same structure as the one for the video

stream (as described in Figure 13), is also applied to embed the dimension-645

reduced audio feature vector into the common representation space.

Fusion subnetwork The multimodal compact bilinear pooling [76] is ap-

plied to the visual and audio embeddings (achieved by applying the video and

music projection heads) to obtain their joint representation. The joint repre-

sentation is then passed to a fully-connected layer of 32 neurons followed by the650

GELU activation function, a fully-connected layer of two neurons, and a softmax

layer to obtain the output. In practice, we tried different fusion techniques such

as concatenation and average pooling. We also adapt the fusion subnetwork

proposed in the L3-Net model in [2] to our model. However, these techniques

do not perform better than the multimodal compact bilinear pooling [76] on the655

EmoMV dataset collection.

Emotion classification branches We perform multi-task learning by ap-

pending video and music branches to the video and music subnetworks. In par-

ticular, after being fed to the fully-connected layers of 64 neurons in the video

and music subnetworks for dimensionality reduction, the dimension-reduced vi-660

sual and audio feature vectors are then passed to the newly added video and

music emotion classification branches, respectively. These branches have the

same structure, which consists of a GELU [87] followed by a fully-connected

layer of five neurons and a softmax layer to obtain the emotion classification

output of each respective modality. We jointly train these emotion classification665

branches with the binary classifier, whereby three cross-entropy loss functions

are used, and each of them is equally weighted.
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5.2. Baseline model

Due to the scarcity of benchmarks for affective video-music correspondence

learning, to assess the performance of our proposed model, we modify the model670

proposed in [5] (originally developed for the music retrieval given videos as

queries such that they convey a similar emotion) and use it as a baseline. The

model in [5] includes a video subnetwork, a music subnetwork, and a cross-modal

learning distance subnetwork. The video subnetwork consists of the RGB stream

of the I3D network [53] pretrained on the Kinetics dataset [44] (which is used675

a feature extractor) followed by fully connected layers. Each fully-connected

layer is followed by a rectified linear unit (ReLU), except for the output layer,

which is followed by a sigmoid function. The music subnetwork is similar to

the network proposed in [54], which includes a block of convolutional layers,

each is followed by the batch normalization and a ReLU activation function.680

In the music subnetwork, the output layer is a fully-connected layer followed

by a sigmoid function. In the cross-modal distance learning subnetwork of the

model in [5]], the visual and audio feature vectors are projected into a common

representation space (by using two fully-connected layers followed by the L2

normalization), from which their Euclidean distance is computed. According685

to [5], the authors train the model with binary cross-entropy loss (for emotion

classification in video and music subnetworks), and contrastive loss [88] (on the

L2-normalization of the obtained Euclidean distance in the cross-modal distance

learning subnetwork). Although the model in [5] is designed for the music-video

retrieval task, it is also used as a binary classifier (by passing the obtained L2-690

normalized Euclidean distance to a sigmoid function) with a threshold of 0.5

to classify whether music-video pairs are matched or mismatched in terms of

emotions. We refer readers to Figure 2 in the paper [5] for more detail. For a

fair comparison with our proposed model, the model [5] is implemented with

the same visual and audio features as those used in ours (i.e. the feature vectors695

extracted by using the pretrained SlowFast and VGGish networks as mentioned

in Section 5.1). We train this model in a multi-task learning manner. However, it

does not perform well on the EmoMV dataset collection (with the classification
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accuracy of less than 50%). To improve the performance of the model, we train

it in two stages. In the first stage, we perform emotion classification on the music700

and video streams in a multi-task learning manner, in which two cross-entropy

loss functions together with the contrastive loss (on the L2-normalization of the

Euclidean distance between the visual and audio embeddings). Note that in this

stage, we do not apply the sigmoid function (with a threshold of 0.5 to classify

whether music-video pairs are matched or mismatched in terms of emotions) as705

conducted in [5]. In the second stage, a logistic regression model is trained on

the L2-normalization of the obtained Euclidean distance between the visual and

audio embeddings to predict matched and mismatched music-video pairs. We

use this framework as a baseline model in this study.

5.3. Experiments710

The performance of our proposed model is evaluated on the EmoMV collec-

tion. The experimental setup and the obtained results are described below.

5.3.1. Experimental Setup

In this study, the Adam optimizer is used in the training phase, whereby

the maximum number of epochs is 1000. We set the batch size and the learning715

rate to 256, and 0.0001, respectively. The early stopping is applied with the

patience parameter of 20. We conduct the experiments using Python 3.6 on a

NVIDIA GTX 1070 GPU. This setup is applied for both our proposed model

and the baseline.

5.3.2. Results720

We carry out experiments on three datasets of the EmoMV collection. In

addition to the classification accuracy, we also use the F1-score [83], and the

AUC score [85] to evaluate the performance of our proposed model.

As shown in Table 8, our proposed approach performs better than the base-

line model on all three datasets of the EmoMV collection. Using our model, the725

classification accuracy, the F1-score, and the AUC obtained on EmoMV-A are

79.03%, 0.80 and 0.87, respectively. These values are much higher than those
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Table 8: Performance of our proposed model on the EmoMV dataset collection with multi-task

learning

Dataset Multi-task learning models Accuracy(%) F1-score AUC

EmoMV-A Baseline (Modified model [5]) 75.00 0.75 0.82

Our model 79.03 0.80 0.87

EmoMV-B Baseline (Modified model [5]) 65.00 0.64 0.75

Our model 75.00 0.76 0.81

EmoMV-C Baseline (Modified model [5]) 67.71 0.65 0.73

Our model 70.83 0.68 0.74

obtained by using the baseline model (with the accuracy, the F1-score, and the

AUC of 75.00%, 0.75, and 0.82, respectively). On the EmoMV-B dataset, us-

ing our model, these values are 75%, 0.76, and 0.81, respectively. Our model730

performs worst on the EmoMV-C dataset with the classification accuracy of

70.83%, the F1-score of 0.68, and the AUC of 0.74. However, its performance

is still better than the baseline with the accuracy of 67.71%, the F1-score of

0.65, and the AUC of 0.73 on this dataset. In general, our proposed model as

well as the baseline perform on the EmoMV-A dataset much better than on735

the EmoMV-B and EmoMV-C datasets. This could be due to the fact that

the matched and mismatched music-video pairs in the EmoMV-A dataset are

constructed from music video segments with human-annotated emotion labels,

while those used to create the EmoMV-B and EmoMV-C datasets are automat-

ically tagged by applying the modified Feature AttendAffectNet model. There-740

fore, these datasets might contain some music-video pairs with noisy labels, and

this might be difficult for the models to classify whether music-video pairs are

matched or mismatched.

We also compute the emotion classification accuracy on music and video

streams of our proposed model and the baseline on the EmoMV dataset col-745

lection. On the EmoMV-A dataset, the emotion classification accuracy of our

model is 65.32% on music and 47.18% on video stream. These values are 83.87%

and 39.92%, respective when the baseline model is used. On the EmoMV-B
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dataset, our model achieves 41.67% accuracy on music and 47.50% on video

stream. These values are 65.00% and 45.00% when the baseline model is used.750

On the EmoMV-C dataset, the accuracy of the baseline model is 58.33% for

music and 43.75% for video stream, while our model achieves 50.00% accuracy

for music and 40.63% for video stream. The baseline approach outperforms

our model on the emotion classification task on music and video streams. This

might be because the baseline model, in nature, is designed for emotion clas-755

sification (as mentioned in Subsection 5.2). In addition, when developing our

model, the binary affective correspondence classification task is our main focus.

In general, both the baseline and our approach do not perform well on the emo-

tion classification task (on music and video streams) on the EmoMV dataset

collection. This phenomenon can be explained by the fact that learning multiple760

tasks simultaneously is a challenging optimization problem, which might result

in lower overall performance in some cases in comparison to learning each task

separately as mentioned in [89, 90].

5.3.3. Ablation Study

Table 9: Performance of our model on the EmoMV dataset collection with single task learning.

Dataset Single task learning models Accuracy(%) F1-score AUC

EmoMV-A Baseline (Modified model [5]) 62.10 0.62 0.70

Our model 80.65 0.80 0.87

EmoMV-B Baseline (Modified model [5]) 58.33 0.57 0.53

Our model 75.83 0.76 0.85

EmoMV-C Baseline(Modified model [5]) 59.38 0.57 0.61

Our model 67.71 0.66 0.77

Instead of doing multi-task learning, we remove the emotion classification765

branches from our proposed model as well as the baseline. These reduced models

are trained using the experimental setup described in Subsection 5.3.1. As

shown in Tables 8 and 9, on all three datasets of the EmoMV collection, there

is no considerable difference in our model performance when single task learning
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or multi-task learning is carried out. In addition, whether the music and video770

branches are appended to the models or not, our approach also achieves a better

performance than the baseline on the EmoMV collection. In particular, after

removing the music and video branches, the accuracy of our model is 80.65%

on the EmoMV-A dataset. This value is 75.83% and 67.71% on the EmoMV-B

and EmoMV-C datasets, respectively. The accuracy, together with the F1-score,775

and the AUC of the baseline model on the EmoMV-A dataset is 62.10%, 0.62,

and 0.70, respectively, after the music and video branches are removed from its

structure. The accuracy of the baseline model on the EmoMV-B and EmoMV-C

datasets is 58.33%, and 59.38%, respectively. The F1-score and the AUC of the

baseline model on the EmoMV-B dataset are 0.57 and 0.53, respectively. On780

the EmoMV-C dataset, these values are 0.57, and 0.61, respectively.

6. Affective Music-Video Retrieval

In this study, in addition to tackling the binary affective music-video corre-

spondence classification task, we also do affective music-video retrieval. Partic-

ularly, given a (muted) video segment as a query, our model retrieves relevant785

music segments (i.e. music segments conveying a similar emotion as the video

query), and vice versa. The adaptation of the above proposed model to the

affective music-video retrieval task, together with evaluation metrics and the

model performance on the EmoMV dataset collection are described in detail

below.790

6.1. Model Adaptation to Affective Music-Video Retrieval

Our proposed model (as shown in Figure 12) is originally designed for the

binary classification task on “matched” or “mismatched” labels. To adapt it

to affective music-video retrieval, we compute the distance between visual and

audio embeddings, instead fusing them together. This approach is similar to795

the ones proposed in [4, 5, 51]. In particular, the compact bilinear pooling

together with the following fully-connected layers and the softmax function are
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discarded. Instead, we compute the cosine distance dcos(fv, fm) between the

visual and audio embeddings (denoted as fv, and fm, respectively) as follows:

dcos(fv, fm) = 1− Scos(fv, fm), (1)

where Scos(fv, fm) is the cosine similarity between the visual embedding (fv)800

and audio embedding (fm). The cosine similarity is computed by using the

following formula:

Scos(fv, fm) =
fv.fm

∥fv∥ × ∥fm∥
, (2)

where ∥fv∥ and ∥fm∥ are the Euclidean norm of vectors fv and fm, respectively.

The music-video retrieval network is trained jointly with the video and music

emotion classification branches using the same experimental setup mentioned in

Subsection 5.3.1, except for the loss functions. In particular, we use three equal-

weighted loss functions including two cross-entropy loss functions (for the video

and music subnetworks), and the contrastive loss [88] on the cosine distance

between the visual and audio embeddings. We train our model as well as the

baseline in a multi-task learning manner. In the inference process, given a

video as a query, our model computes the cosine similarity score (as described

in Equation 2) between the visual embedding (of the video query) and the

audio embeddings of all given music segments (in the database). Based on

this similarity score, all given music segments are ranked, and the top-ranked

results are considered to be the best matches to the video query. For the baseline

model, the similarity score SEuclid between the visual and audio embeddings is

computed from their Euclidean distance dEuclid as follows:

SEuclid =
1

dEuclid
. (3)

6.2. Experiments

We evaluate the performance of our proposed model for affective music-video805

retrieval on the EmoMV dataset collection. The evaluation metrics together

with the obtained results are described below.
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6.2.1. Evaluation Metrics

To evaluate the performance of our model on the affective music-video re-

trieval task, we compute the Mean Average Precision score as used in [91, 92, 93],810

and the top-K retrieval accuracy. These scores are defined as follows:

Top-K retrieval accuracy Given videos as queries, the top-K retrieval

accuracy is the proportion of the video queries with at least one relevant music

segment retrieved within the first K results. In [5], only top-1 retrieval accuracy

is used.815

Mean Average Precision (mAP) According to [92, 93], when computing

the mAP score, a retrieved result is considered as relevant to the query if it

has the same label as the query, otherwise, it is irrelevant. This means that

for each video, there are many relevant (i.e. ground-truth) music segments and

vice versa. In the information retrieval theory [94], the mAP is the mean of the820

Average Precision (AP) of all queries, and is defined as follows:

mAP =
1

N

N∑
i=1

APi, (4)

where N is the number of queries, APi is the Average Precision for query i,

which is computed using the following formula:

APi =
1

Ri

Ri∑
j=1

Precisioni(rel = j), (5)

where Ri is number of relevant documents for query i (Note that in our study,

the documents can be understood as music segments if the query is a video, and825

vice versa). Precisioni(rel = j) is the precision at the j-th document that is

relevant to query i and is computed as follows:

Precisioni(rel = j) = ri(j)/j, (6)

where ri(j) is the number of documents up to position j that are relevant to

query i.
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6.2.2. Results830

We use the test set of the MVED dataset, from which the test set in our

EmoMV-A dataset is constructed, to evaluate the performance of our music-

video retrieval model. Note that our affective music-video retrieval model is

trained on the train set of the EmoMV-A dataset, in which the “matched” and

“mismatched” music-video pairs are constructed from music video segments an-835

notated with “exciting”, “tense”, “fearful”, “sad”, and “relaxing” labels (except

for the “neutral” ones). Therefore, we discard the “neutral” music video seg-

ments from the test set of the MVED dataset before using it to evaluate the

performance of our music-video retrieval model. Similarly, the music video seg-

ments (except for the “neutral” ones), from which the validation sets of the840

EmoMV-B and EmoMV-C datasets are constructed, are also used to evaluate

the performance of our retrieval model.

As shown in Tables 10, and 11, our model outperforms the baseline for

the affective music-video retrieval task on all three datasets of the EmoMV

collection. Using videos as queries, on the EmoMV-A dataset, the top-1 accu-845

racy of our model is 56.00%, while that of the baseline is 34.40%. Similarly,

our model also reaches higher top-3 and top-5 accuracy on this dataset. Our

mAP is 58.53%, whereas the baseline achieves 39.59% only for this score on

the EmoMV-A dataset. On the EmoMV-B and EmoMV-C datasets, the top-K

accuracy, as well as the mAP of our model, are not as high as those on the850

EmoMV-A dataset, however, they are still better than those obtained by us-

ing the baseline model. On the EmoMV-B dataset, the baseline model reaches

33.33% for the top-1 accuracy, which is much lower than 43.33% achieved by

using our model. In terms of the mAP, our model achieves 46.14%, yet the

baseline only reaches 40.79%. On the EmoMV-C dataset, our top-1 accuracy855

and mAP are 33.33%, and 41.64%, respectively. These values are 27.08%, and

38.82%, respectively when the baseline model is used.

When music segments are used as queries to retrieve videos, the top-1 ac-

curacy and the mAP of our model on the EmoMV-A dataset are 56.00% and
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Table 10: Given a video query, retrieve music: Accuracy and the mAP on the EmoMV dataset

collection.

Dataset Multi-task learning models Top-1(%) Top-3(%) Top-5(%) mAP (%)

EmoMV-A Baseline (Modified model [5]) 34.40 60.80 68.00 39.59

Our model 56.00 70.80 75.20 58.53

EmoMV-B Baseline (Modified model [5]) 33.33 45.83 66.67 40.79

Our model 43.33 68.33 80.00 46.14

EmoMV-C Baseline (Modified model [5]) 27.08 53.13 72.92 38.82

Our model 33.33 63.54 75.00 41.64

Table 11: Given a music query, retrieve videos: Accuracy and the mAP on the EmoMV

dataset collection.

Dataset Multi-task learning models Top-1(%) Top-3(%) Top-5(%) mAP(%)

EmoMV-A Baseline (Modified model [5]) 25.20 49.60 76.80 39.45

Our model 56.00 83.60 90.80 52.31

EmoMV-B Baseline (Modified model [5]) 43.17 70.83 75.83 43.72

Our model 44.17 77.50 86.67 46.83

EmoMV-C Baseline (Modified model [5]) 39.58 76.04 85.42 38.59

Our model 46.88 75.00 86.46 41.98

52.31%, respectively. These values obtained by using the baseline model are860

lower at 25.20%, and 39.45%, respectively. On the EmoMV-B and EmoMV-C

datasets, using our model, the top-1 accuracy is 44.17% and 46.88%, respec-

tively. The mAP score of the our model on these two datasets is 46.83% and

41.98%, respectively. These values on the EmoMV-B and EmoMV-C datasets

are also higher than those obtained by using the baseline model, thus confirming865

that we have proposed a strong model for affective music-video retrieval.

6.2.3. Ablation Study

We perform an ablation study by removing the emotion classification branches

from our affective music-video retrieval model as well as the baseline, and train
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them with the experimental setup described in Subsection 5.3.1. As shown in870

Tables 12 and 13, on all three datasets of the EmoMV collection, the single

task learning models perform worse than the ones with multi-task learning.

Additionally, whether doing multi-task or single task learning, our approach

outperforms the baseline on the EmoMV collection. According to Table 12, for

the task of retrieving music given videos as queries, our model performance de-875

creases slightly after the emotion classification branches are removed, with the

mAP declining from 58.53% to 50.41% while the top-1 accuracy does not change

considerably on the EmoMV-A dataset, after removing the emotion classifica-

tion branches. The mAP decreases from 46.14% to 43.50% (on the EmoMV-B

dataset), and from 41.64% to 38.20% (on the EmoMV-C dataset). The top-1880

accuracy and the mAP of the baseline model on the EmoMV-A dataset are

significantly reduced from 34.40% to 20%, and 39.59% to 22.58%, respectively,

after the music and video branches are removed from its structure. The per-

formance of the baseline model on the EmoMV-B and EmoMV-C datasets also

decreases, with the top-1 accuracy declining to 10.00%, and 7.29%, respectively.885

The mAP of the baseline model on the EmoMV-B dataset also declines from

40.79% to 25.73%. On the EmoMV-C dataset, this value decreases from 38.82%

to 26.24%.

Table 12: Given a video query, retrieve music: Accuracy and the mAP on the EmoMV dataset

collection with single task learning.

Dataset Single task learning models Top-1(%) Top-3(%) Top-5(%) mAP (%)

EmoMV-A Baseline (Modified model [5]) 20 60 80 22.58

Our model 56.80 68.40 77.20 50.41

EmoMV-B Baseline (Modified model [5]) 10.00 43.33 43.33 25.73

Our model 40.83 70.00 81.67 43.50

EmoMV-C Baseline (Modified model [5]) 7.29 53.13 100 26.24

Our model 35.42 65.63 77.08 38.20

As shown in Table 13, for the case of retrieving videos given music segments
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Table 13: Given a music query, retrieve videos: Accuracy and the mAP on the EmoMV

dataset collection with single task learning.

Dataset Single task learning models Top-1(%) Top-3(%) Top-5(%) mAP (%)

EmoMV-A Baseline (Modified model [5]) 20 20 20 31.28

Our model 62.40 88.80 93.20 49.81

EmoMV-B Baseline (Modified model [5]) 25.83 55.83 64.17 27.21

Our model 41.67 73.33 84.17 42.63

EmoMV-C Baseline (Modified model [5]) 26.04 54.17 70.83 30.01

Our model 36.46 72.92 87.50 39.42

as queries, after removing the emotion classification branches, the performance890

of our model and the baseline gets worse on all three datasets of the EmoMV

collection. In particular, the top-1 accuracy and the mAP of our model decline

to 62.40% and 49.81%, respectively, on the EmoMV-A dataset. These values

are only 20% and 31.28% for the baseline model. Similarly, on the EmoMV-B

and EmoMV-C datasets, the top-1 accuracy of our model is reduced to 41.67%895

and 36.46%, respectively, while the mAP declines to 42.63% and 39.42%, re-

spectively. When the emotion classification branches are removed, the baseline

model performs worse on the EmoMV-B and EmoMV-C datasets, with the top-

1 accuracy of 25.83%, and 26.04%, respectively. On these datasets, the mAP of

the baseline model is only 27.21% and 30.01%, respectively.900

7. Conclusion

In this study, we tackle the problem of limited available data for affective

audio-visual correspondence learning by constructing the EmoMV collection

consisting of three datasets (EmoMV-A, EmoMV-B, and EmoMV-C). In these

datasets, music and video streams are labelled as “matched” or “mismatched” in905

terms of the emotions they are conveying. This collection of datasets, together
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with the code of all our models is available online 5. The EmoMv-A dataset

is created by making use of the available MVED dataset (which is primarily

used for the emotion classification task) with emotions annotated by humans.

The EmoMV-B dataset is constructed by first manually selecting music video910

segments from the Music Mood dataset of the AudioSet ontology. The music and

video modalities of these selected music video segments are then automatically

labelled with emotion categories using a deep neural network (in particular,

the modified Feature AttendAffectNet model). These music video segments

together with the predicted emotion labels are then used to create the EmoMV-915

B dataset. In the EmoMV-C dataset, music video segments are first split from

soundtrack music videos (of songs featured in movies) that we self-collected

from YouTube, therefore, they might contain some movie scenes. This also

makes this dataset different from others in the EmoMV collection. The modified

Feature AttendAffectNet is also applied to automatically label the music and920

video streams of the soundtrack music video segments with emotion categories.

These music video segments together with the predicted emotion labels are

then used to create matched and mismatched music-video pairs. An online

survey is then carried out to evaluate the accuracy of labels provided in our

datasets. The survey results show that the matched and mismatched segments925

are mostly differentiated by humans. In addition, the overlapping rate between

the predicted emotion labels provided in our datasets and the ones rated by

humans is high. Notably, although the emotion classification task is not the main

focus of this study, the modified Feature AttendAffectNet model outperforms

other state-of-the-art approaches on this task on the MVED dataset.930

In addition to the dataset creation, we also address the tasks of binary

affective music-video correspondence classification and affective music-video re-

trieval. To tackle the former, a deep neural network structure is proposed to clas-

sify whether music-video pairs are matched or mismatched in terms of emotions.

We use state-of-the-art pretrained deep neural networks as feature extractors935

5The_link_will_be_added_after_the_peer_review_process
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to obtain visual and audio features from video and music streams. Such visual

and audio features are then projected into a common representation space, from

which they are fused together, and a binary classification task (with “matched”

or “mismatched” output) is carried out. The model is then trained in a multi-

task learning manner, whereby the binary classification (for the ”matched” and940

”mismatched” labels) together with emotion classification on the video and mu-

sic streams are conducted simultaneously. To adapt our proposed model to the

affective music-video retrieval task, we compute the cosine distance between the

visual and audio embeddings, instead of fusing them together. Ablation stud-

ies are then carried out, whereby our multi-task learning model is converted to945

the one with single task learning by removing the emotion classification tasks

on the music and video streams. As a result, our proposed model outperforms

state-of-the-art approaches on the EmoMV dataset collection whether single

task learning or multi-task learning is conducted.

In sum, in this study, we construct a collection of three publicly available950

ground-truth datasets, which could be used by researchers to explore the rel-

atively unexplored tasks of affective audio-visual correspondence learning. In

addition, we offer a strong benchmark model (with single-task and multi-task

learning) together with results for each of our three created datasets. In future

work, we might develop other deep neural networks and evaluate their perfor-955

mance on the EmoMV dataset collection. In addition, it would be good to

conduct large-scale user studies to further verify the accuracy of labels offered

in our newly created datasets and our proposed affective music-video retrieval

model.
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