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Abstract

A piano fingering indicates which finger should play each note in a piece. Such a guideline
is very helpful for both amateur and experienced players in order to play a piece fluently. In
this paper, we propose a variable neighbourhood search algorithm to generate piano fingerings
for complex polyphonic music, a frequently encountered case that was ignored in previous re-
search. The algorithm takes into account the biomechanical properties of the pianist’s hand
in order to generate a fingering that is user-specific and as easy to play as possible. An extens-
ive statistical analysis was carried out in order to tune the parameters of the algorithm and
evaluate its performance. The results of computational experiments show that the algorithm
generates good fingerings that are very similar to those published in sheet music books.
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1 Introduction

The piano is an instrument with one of the widest ranges of playable notes, spanning over seven
octaves. It offers tremendous musical opportunities to both the pianist and composer. Unfortu-
nately, a pianist only has ten fingers to play the piano’s 88 keys. Therefore, it can be very helpful
to have a piano fingering available, especially for beginner pianists. A piano fingering indicates
which finger should play each note in a piece. Any finger could be used to play any note on a piano,
contrary to instruments such as the saxophone or the recorder for which the fingerings are fixed.
Depending on the melodic and harmonic properties of piano pieces, some fingerings are easier or
better suited than others. The quality of a piano fingering depends to some degree on the pian-
ist’s expertise level and biomechanical properties (e.g., the maximum distance between two notes
that can be played with the same hand varies widely between pianists), as well as the composer’s
desired interpretation (e.g., accented notes should be played with ‘strong’ fingers) (Sloboda et al.,
1998).

There is a widespread agreement that a good piano fingering is crucial to allow a pianist to
play a piece fluently (Parncutt et al., 1997). However, deciding on the right fingering for a piece
of music can be a complex, time consuming and burdensome task (Hart et al., 2000). Automation
of this process could help pianists, both novices and experts (Yonebayashi et al., 2007a). For the
former, finding a fingering that allows them to play a piece fluently is difficult in its own right.
The latter could save valuable time by having an automatically determined fingering, possibly
consisting of different alternatives with different expressive characteristics (Gellrich & Parncutt,
1998; Parncutt et al., 1999).
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2 LITERATURE REVIEW

Generating a piano fingering for a specific piece can be seen as a combinatorial optimisation
problem. This is characterised by discrete decision variables that assign a specific finger to each
note, an objective function that indicates the difficulty of the fingering, and a set of constraints to
ensure the fingering is playable by a human. In this paper, we formulate the generation of a piano
fingering as such a combinatorial optimisation problem and propose an effective and efficient
algorithm to solve it. This algorithm and its parameter settings are thoroughly tested in two
computational experiments. The approach proposed in this paper goes further than the current
state-of-the-art in that it is able to handle complex polyphonic music, determines a fingering for
both hands and allows for user-specific inputs.

In the next section, an overview of the current literature available for the generation of a piano
fingering is discussed. In Section 3, finding a piano fingering for polyphonic music is defined as
a combinatorial optimisation problem and a metric for evaluating the difficulty of a fingering is
described. In Section 4, the developed variable neighbourhood search algorithm is discussed in
detail. Section 5 evaluates the performance of the algorithm and describes the computational
experiments carried out to tune its parameters. Section 6 shows example outputs and discusses
the results. Conclusions and recommendations for further research are given in Section 7.

2 Literature review

The first exercises for learning how to select piano fingerings were published in the 18th century.
C.P.E. Bach was one of the first to publish such work. He was followed by many others in the
19th century (Gellrich & Parncutt, 1998). The first mathematical translations and algorithm
developments for this problem were proposed at the end of the 20th century. Similar research for
other instruments can be found: e.g., automatic string instrument fingering by Radicioni et al.
(2004).

2.1 Measuring the quality of a piano fingering

Throughout history, different rules emerged for deciding on an appropriate piano fingering. They
even became repertory dependent (Clarke et al., 1997; Gellrich & Parncutt, 1998). According to
Parncutt et al. (1997), the quality of a fingering can be measured by three objectives. The first
objective is the ease of playing, which is related to the size and biomechanics of the hand. A second
objective is the ease of memorisation, as some musicians can memorise certain combinations more
easily than others. Finally, the third objective is musical expressiveness. A good fingering should
help the pianist to convey the musical message intended by the composer.

In order to comply with the first objective, any algorithm that generates piano fingerings
should take personal biomechanics of a pianist into account. Robine (2009) shows that the chosen
fingering influences the musical execution and expressiveness, as considered by the third object-
ive. This author gives the specific example of small lags between two notes, caused by passing
the thumb underneath another finger. Because of the aforementioned, different pianists choose
different fingerings for the same piece, as proven by Parncutt et al. (1997, p. 369-372). This latter
criterion is especially important for more advanced pianists, since the potential to express certain
musical interpretations with different fingering combinations becomes possible. When deciding on
a fingering, a trade-off between these three criteria should be made (Clarke et al. 1997; Sloboda
et al. 1998, p. 185). According to Clarke et al. (1997, p. 100) however, some details of fingerings
are subject to personal preferences. As a result, we believe that they cannot all be captured by
the model and that manual adaptations afterwards may be required.

Quantifying the quality of a fingering is one of the most important aspects in defining the
generation of a piano fingering as a combinatorial optimisation problem. One of the first papers
to introduce a cost-minimising paradigm to quantify the difficulty of a piano fingering in the
literature is due to Parncutt et al. (1997). The higher the cost of a fingering, the more difficult it
is to play the piece using the specified fingers. The authors increase the cost of a fingering based on
rules that penalise difficult sequences and distances in a fingering. This set of rules is also applied
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2.2 Solution strategies 3 PROBLEM DESCRIPTION

by Parncutt (1997) and Lin & Liu (2006) and expanded by Jacobs (2001). An important feature of
this cost minimising paradigm, is that it uses a set of complementary rules. This makes it possible
to identify certain trade-offs between different origins of difficulty and assign a weight to them. The
rules from this approach are interpretable and have a musical/biomechanical origin, contrary to
machine learning methods that learn a transition matrix based on a monophonic fragment (Robine,
2009; Hart et al., 2000) or short fragments with simple polyphonic chords (Al Kasimi et al., 2005,
2007). Yonebayashi et al. (2007a) learned Hidden Markov Models [HMM], whereby the fingering
with the highest probability is considered to be the best alternative. Nakamura et al. (2014)
implement an HMM for simple polyphonic music. They state that the advantage of this approach
is that it differentiates between the left and right hand without needing a predetermined separation
between notes in the right and left hand staff.

2.2 Solution strategies

The solution strategies found in the literature for finding good piano fingerings differ widely.
Parncutt et al. (1997), Al Kasimi et al. (2005, 2007) and Lin & Liu (2006) make use of the Dijkstra
algorithm. This algorithm calculates the shortest path in a graph, by retaining the minimal total
cost paths through nodes containing the previous, actual and following used finger. This total
cost is the accumulation of all the costs of the previous nodes on this path, increased with the cost
of the actual node. At the last node of the algorithm, the shortest path is found. Moreover, as
this algorithm was implemented on a situation which excluded a considerable amount of solutions
which could not be played legato1 from the solution space, Parncutt et al. (1997) claimed that
its execution time had been reduced from exponential to polynomial. This approach however is
not well suited to deal with complex polyphonic music whereby simultaneous notes have different
start and end points, because this would result in an exponentially large number of nodes. It could
also be possible that a complex polyphonic piece cannot or should not be played legato. A similar
algorithm would then result in an empty solution space. In general, complex polyphony with
different simultaneous melody lines complicates the application of any algorithm using networks
or graphs.

Hart et al. (2000) and Robine (2009) use dynamic programming algorithms with very similar
characteristics to the Dijkstra algorithm. This alternative approach finds the shortest path in
a graphical network, using transition matrices and calculating backwards from the end to the
beginning. In each node n, the finger used for the n-th note is indicated. For the last node,
the cheapest transition to reach this node from all previous possible nodes is calculated. This is
repeated for the previous node, considering the sum of the previously calculated score of the best
transitions to the last node and the score of this additional transition. The algorithm calculates
its way back to the first node, by repeating this action N − 1 times with a total of N nodes.
The first node corresponding to the lowest total cost, is chosen as the solution. From then on,
the best transitions have to be chosen from the previously explored transitions. Similar to this
approach, Yonebayashi et al. (2007a) and Nakamura et al. (2014) use the Viterbi Algorithm [VA]
to find the optimal solution from a HMM for monophonic music. As Forney Jr (1973) states, VA
is a simplified version of forward dynamic programming to find the shortest path in a graph that
corresponds to the maximal a posteriori probability [MAP] estimation problem for a sequence of
states, such as a HMM.

3 Problem description

In this section, the problem of finding an optimal fingering is presented as a combinatorial op-
timisation problem. The decision variables are discussed below, followed by a description of the
objective function and imposed constraints. At the end of this section, the complexity of the
problem is discussed.

1smoothly connected
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3.1 Decision variables 3 PROBLEM DESCRIPTION

3.1 Decision variables

A piano fingering indicates which finger should be used to play each note. In piano music, a piece
consists of two staves, whereby the notes from the upper staff are played by the right hand and
those from the lower staff by the left hand. This means that a solution of the piano fingering
problem can be split up in two different sub problems, one for every hand or staff.

The convention when writing fingerings is to label every finger with a number from one up to
five, where the first finger is the thumb. This is illustrated in Figure 1.

Figure 1: Convention for piano fingering representations (Yonebayashi et al., 2007b).

3.2 Objective function

In this paper, we define a set of rules that is used to evaluate the difficulty of a candidate fingering.
This is done by measuring the extent to which the rules are followed. In analogy with Parncutt et
al. (1997), Jacobs (2001) and Al Kasimi et al. (2005), an objective function based on an adapted
version of their rules is minimised. This function penalises difficult combinations of fingers. In
order to properly evaluate biomechanical characteristics of finger positions, a distance matrix is
first defined.

3.2.1 Distance matrix

How easy is it to play two subsequent notes with a particular set of fingers? This depends mainly
on the finger pair used and the physical distance between the notes on the piano. When using
two adjacent fingers, the distance between the notes should be small. To quantify this idea, a
distance matrix is defined. The convention of Parncutt et al. (1997) is used, in which six different
types of distances are defined per finger pair. MinRel and MaxRel stand for minimal and maximal
relaxed distances, which means that two notes separated by this physical distance on the keyboard
can easily be played with this finger pair, while still maintaining a relaxed hand. MinPrac and
MaxPrac define the largest distances that can be played by each finger pair. All of these distances
are user-specific and can easily be adapted in the implementation of the described algorithm.
The two final distances are MinComf and MaxComf. These show the distances that can be played
comfortably, in the sense of not having to stretch to a maximal spread. They depend on the values
of MinPrac and MaxPrac, as can be derived from Eq. (1) (Parncutt et al., 1997).

MaxComfo = MaxPrac− 2(for all finger pairs).

MinComf = MinPrac + 2 (for finger pairs including the thumb),

= MinPrac (for finger pairs without a thumb).

(1)

When evaluating a fingering, ranges of distances are required in order to know which are the
largest spreads that can be attained. For this reason minimal and maximal distances are defined
to delimit the relaxed, comfortable and practical ranges.

In this paper, distances are expressed in units that measure how many piano keys one note
is separated from another. This is analogous to the definition of Parncutt et al. (1997) and is
visualised in Figure 2. Nevertheless, distances between some keys are altered in this research in
order to solve the issue noticed by Jacobs (2001). He stated that a missing black key between
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3.2 Objective function 3 PROBLEM DESCRIPTION

Table 1: Example distance matrix for a large right hand (adapted from Parncutt et al. (1997)).

Finger pair MinPrac MinComf MinRel MaxRel MaxComf MaxPrac

1-2 -10 -8 1 6 9 11
1-3 -8 -6 3 9 13 15
1-4 -6 -4 5 11 14 16
1-5 -2 0 7 12 16 18
2-3 1 1 1 2 5 7
2-4 1 1 3 4 6 8
2-5 2 2 5 6 10 12
3-4 1 1 1 2 2 4
3-5 1 1 3 4 6 8
4-5 1 1 1 2 4 6

E and F on one hand, and between B and C on the other hand, does not influence the distance
between these respective key pairs. Therefore we introduce two imaginary, unused keys (key 6
and 14 in Figure 2) where a black key is missing. The numbering of the keys (or relevant pitches)
continues in the next octave, in such a way that the next key (C) would be attributed a value
of 15. This representation system has several advantages. First, the distance between two keys
can now correctly be calculated without a bias for the ‘missing keys’. Moreover, by calculating
modulo 2, one can distinguish between black and white keys. Finally, by calculating modulo 14,
the pitch class can be decoded.

Figure 2: Distances on a piano keyboard with additional imaginary black keys.

All finger pairs involving the same finger twice (e.g., fingers 1-1) are set to zero in the distance
matrix. An example of the other values in such a distance matrix for a large right hand is given
in Table 1 as an adaptation of Parncutt et al. (1997), taking into account the newly defined key-
board distances. For pianists with smaller hands, tables with reduced absolute values of MinPrac,
MaxPrac, MinRel and MaxRel are available in the developed software. Alternatively, users could
adapt them according to their personal preferences, as was also suggested by Al Kasimi et al.
(2005, 2007).

Interpreting the values in Table 1 is straightforward in combination with the keyboard image
in Figure 2. A value of -10 for MinPrac R(1-2) means that when the thumb is put on A4 (11),
the index of a large right hand can be stretched no further than C4 (1), because 1 − 11 equals
-10. In order to calculate the distances for the finger pair where the order of the fingers used in
first and second position are swapped, Min and Max have to be interchanged and the values have
to be multiplied by -1. E.g., to calculate MinPrac R(2-1) from finger 2 to 1 of the right hand:
take MaxPrac R(1-2) (11) and multiply by -1. This gives MinPrac R(2-1) = −11. To deduce the
information for the left hand, the order of the finger pair needs to be swapped (e.g., 1-2 becomes
2-1). E.g., to calculate MinPrac L(2-1) = MinPrac R(1-2) = −10 (Parncutt et al., 1997).
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3.2.2 Rules

The previously defined distance matrix is used to calculate how well a fingering adheres to the set
of fingering rules. These rules are listed in Table 2, which includes a description, the associated
penalty in the objective function and the originating source for each rule. The application column
specifies the relevance of each rule in the context of monophonic, polyphonic or both types of
music.

Rules 1, 2, and 13 take the distance matrix into account for consecutive notes. These rules
can be applied for each pair of subsequent notes both for monophonic and polyphonic music. To
prevent unnatural finger crossings in chords, rules 1, 2, and 13 are also applied within a chord in
rule 14 to avoid awkward positions. An example of such a position would be the right index finger
placed on a lower note than the right thumb within one chord. Hence within rule 14, rules 1 and 2
are applied with doubled scores to account for the importance of this natural hand position within
one chord.

It is important to point out that Parncutt et al. (1997) use the distances MinPrac and MaxPrac

in rule 13 as hard constraints. These minimal and maximal distances of each finger pair are not
to be violated. If no feasible fingering is found, then that particular (monophonic) part cannot
be played legato. In this paper, these practical distances are implemented as soft constraints in
the objective function, but they are assigned very high penalties per unit of violation (e.g., +10).
This allows to apply the set of rules of Parncutt et al. (1997) on polyphonic music more easily.
Otherwise, it would be very hard for the algorithm to find a feasible initial solution.

Rules 3 and 4 also consider the distance matrix and account for hand position changes, which
have to be reduced to necessary cases only (Parncutt et al., 1997). Rules 5 up to 11 prevent
difficult transitions in monophonic music. The original scores of rule 8 and 9 could respectively
add up to five or four between one pair of notes, which is relatively high compared to a score of
one or two, resulting from the application of the other rules. Therefore, the score obtained by
these rules is divided by two compared to the original suggestion made by Parncutt et al. (1997).
In addition, the use of the fourth finger should not always be avoided, since the pianist might
want to train this finger. Hence the user is advised to change the score in rule 5 to zero, which is
also the default setting for our experiments. However, since the use of finger three and four in any
consecutive order is complicated by their biomechanical connection, rules 6 and 7 are retained in
order to prevent this difficult combination (Leijnse, 2014).

Rule 12 prevents the repetitive use of a finger in combination with a hand position change.
For instance, a sequence C4–G4–C5 fingered 2–1–2 in the right hand forces the pianist to reuse
the second finger very quickly. This becomes problematic in fast pieces. Therefore, the finger
combination 2-1-3, which is favoured by rule 12, offers a better solution. Rule 15 tries to prevent
hand position changes when notes with the same pitch are played consecutively. When this rule
would not be implemented, consecutive notes which have the same pitch could be played by a
different finger.

The logic of the rules and their relative scores were obtained from discussions with professional
musicians (Eeman, 2014; Swerts, 2014; Chew, 2014; Leijnse, 2014). The scores resulting from the
application of each rule are summed for each hand to form the total difficulty score per hand for a
candidate fingering. This is shown in Eq. (2). This sum forms the objective function of the piano
fingering problem and should be minimised in order to find an easily playable fingering. For each
hand, one objective function is defined, because each hand can be optimised independently.

min f(s) =
∑
i

fi(s) (2)

An advantage of this approach is that it allows the user to change the score of different rules
and thus change their relative importance. For instance, pianists who do not like to use the fourth
finger might set the score of rule 5 back to one instead of zero.
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3.3 Constraints

In addition to the soft constraints defined in the objective function above, a hard constraint is
defined, stating that the same finger cannot be used on two different keys played at the same time.
A violation of this constraint results in a rejection of the solution.

3.4 Complexity of the problem

The piano fingering problem can be considered as a special case of the partial constraint satisfaction
problem [PCSP] (Koster et al., 1998). The PCSP is defined by a so-called constraint graph
G = (V,E), where V is the set of vertices and E is the set of edges. Each vertex v ∈ V represents
a decision variable that must be assigned a value from a given domain Dv. Each value in Dv

has a penalty associated to it, which is defined by a vertex-penalty function Qv : Dv → R. An
edge {v, w} ∈ E indicates that there are penalties attached to certain combinations of values for
vertices v and w. These penalties are defined by an edge-penalty function P{v,w} : {{dv, dw} | dv ∈
Dv, dw ∈ Dw} → R. In a more formal notation, the PCSP can be defined by the quadruple
(G = (V,E), DV , PE , QV ), where DV is the set of domains Dv (for each vertex v ∈ V ), PE is the
set of edge-penalty functions P{v,w} (for each edge {v, w} ∈ E) and QV is the set of vertex-penalty
functions Qv. The objective of the PCSP is to find an assignment A = {av | v ∈ V, av ∈ Dv} that
minimizes the total sum of the penalties

∑
{v,w}∈E P{v,w}({av, aw})+

∑
v∈V Qv(av). This problem

is known to be NP-hard as it can be reduced to the maximum satisfiability problem (Koster et
al., 1998, 1999).

The piano fingering problem can be modelled as an instance of the PCSP in which each note
in a piece is represented by a vertex v ∈ V . In this sense, each vertex (note) must be assigned
a value (finger) from a common domain Dv = {1, 2, 3, 4, 5}. The set of rules defines the edges
that connect each pair of vertices {v, w} ∈ E, the edge-penalty functions in PE and the vertex-
penalty functions in QV . Two vertices are connected by an edge if the notes they represent are
played simultaneously or consecutively2. This condition causes the graph G that defines the PCSP
instance to have a very specific structure. Nonetheless, to the best of our knowledge, it is unclear
whether such properties make this kind of instances easier to solve.

4 Variable neighbourhood search algorithm

Exact algorithms are often used to solve a wide range of combinatorial optimisation problems.
These algorithms guarantee to find the optimal solution. However, for complex problems, their
execution time can grow exponentially with the size of the instance. For these cases, metaheuristics
present a good alternative solution technique. Although they are not guaranteed to find the
optimal solution, they tend to find very good solutions for complex instances in a reasonable
execution time.

A metaheuristic is a high-level problem-independent algorithmic framework that provides a
set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen & Glover,
2012). Heuristics are based on rules of thumb and are a frequently applied alternative to solve
complex combinatorial optimization problems. Metaheuristics are divided into three categories;
constructive, population-based and local search [LS] (Sörensen & Glover, 2012; Herremans &
Sörensen, 2013). LS metaheuristics form a large class of metaheuristics that are characterised by
the fact that they iteratively improve a solution (called the current solution) by applying small
adaptations (moves) to it. For most representations of combinatorial optimisation problems,
different move types can be defined. The set of all solutions reachable from a given current
solution by a single move of a given move type is called this solution’s neighbourhood (Sörensen &
Glover, 2012). When no more improving moves of a certain type exist in the neighbourhood of the

2Note that this model of the piano fingering problem excludes complex rules that involve triplets of notes (like,
for example, Rule 4 in Table 2). Nevertheless, such simplification is still useful to illustrate the complexity of the
problem.
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current solution, a local optimum is reached. A possible way to escape such a local optimum is by
using a different move type, a strategy commonly called variable neighbourhood search [VNS]. This
strategy is based on the fact that a local optimum relative to a certain move type is not necessarily
a local optimum relative to another (Mladenović & Hansen, 1997). When all neighbourhoods are
exhausted, a perturbation randomly changes part of the best solution so that the next iteration of
the algorithm can continue the search (Lourenço et al., 2003).

The algorithm developed in this paper is a VNS algorithm. Herremans & Sörensen (2012) also
successfully applied a VNS algorithm to a musical problem, namely to the automatic composition
of counterpoint music. A local search metaheuristic might also prove to be successful in piano
fingering, as the process of making small changes to a fingering is analogous to an artist making
final adaptations to a given fingering (whether or not indicated by the composer). This approach is
similar to how Sloboda et al. (1998, p. 185) describe the human process involving some heuristics.
Moreover, since metaheuristics can generate good-quality solutions in a reasonable execution time,
they offer a promising optimisation framework to generate good fingerings for complex polyphonic
pieces.

The implemented VNS algorithm does not require a graph based representation for solutions,
which allows it to be easily applied to polyphonic music. The complex nature of polyphonic music
makes it very difficult and computationally expensive to use an exact approach. Metaheuristics
offer an efficient way of solving the specified piano fingering problem.

As can be seen from the flowchart diagram in Figure 3, the algorithm starts by generating a
random initial solution. Every note is assigned a finger at random. In order to obtain a feasible
solution, once a finger is used in a particular time slice, this finger can no longer be assigned to
another note in the same slice. A slice is a part of the piece with the duration of the shortest note
from the piece. In this way, the duration of a note consists of an integer number of slices. The
described process works its way through the piece from left to right. Assuming that maximum
five notes are to be played at the same time by one hand, a feasible solution is guaranteed. After
generating the initial fingering for both staves, the right and left hand are optimised separately. An
initial preprocessing step, called Swap, is performed to make a large improvement by interchanging
all assignments of two fingers throughout the entire piece. This step produces a relatively small
neighbourhood with a maximum size of 10 possible moves3.

The implemented local search procedure (VNS) uses different neighbourhood structures, each
defined by a move type. In order to get an indication of the complexity of the algorithm, the
formulas for calculating the size of each type of neighbourhood are given below. These formulas
are based on a piece containing chords, each with the same amount of notes. t is used to indicate
the number of notes in the piece and s refers to how many notes are played simultaneously within
one chord. The neighbourhood sizes for the example piece in Figure 4 are calculated below.

In the algorithm, there are three neighbourhood structures included:

Change1 The Change1 move type changes the fingering of each note to any other allowed finger.
The resulting neighbourhood contains feasible fragments in which one finger is changed. An
example of this type of move is given in Figure 5(a). The size of this neighbourhood can be
calculated as (5− s)t.
In the example piece in Figure 4, there would be 24 possible solutions in a Change1 neigh-
bourhood.

Change2 For the Change2 move type, the previous Change1 move is expanded to changing the
fingering of two notes that are either adjacent or simultaneously played. This results in a
neighbourhood which consists of fragments with two changed fingers. For an example, we
refer to Figure 5(b). The size of this neighbourhood is given by

(
s
2

)
[(6− s)(5− s) + 1] + ( t

s −
1){
(
s
2

)
[(6− s)(5− s) + 1] + s2(5− s)2}.

In the example piece in Figure 4, this neighbourhood contains 192 solutions.

SwapPart A SwapPart move type is included to enhance the changeability of the fingering of
simultaneous notes. Suppose a long note a, assigned finger f is played simultaneously with

3
(5
2

)
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Figure 3: Structure of the algorithm.
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4 VARIABLE NEIGHBOURHOOD SEARCH ALGORITHM

Figure 4: A short example piece used to calculate sizes of the neighbourhoods, with s = 3 and t = 12.

multiple short notes b1, b2, ..., bk, each assigned the same finger g. Since all notes bi are fully
contained within note a, none of the previous move types would allow note a to be assigned
finger g, as this would break the basic feasibility rule (because one finger would be playing
multiple notes at the same time). The SwapPart however does allow the algorithm to swap
fingers f and g, even in cases where it would otherwise not be possible without breaking
feasibility. Moreover, this strategy only swaps the fingering of simultaneous notes that are
fully contained within the interval of the longer note in order to reduce the probability of
arriving at an infeasible solution. An example of this move type is shown in Figure 5(c).
In the figure, D5 is note a, played by finger 1. Notes F4, A4 and again F4 are played
simultaneously with D5. Both the F4’s could be considered as notes b1, b2, played with finger
5. The fingering of the longer note can only be changed from 1 to 5 when all simultaneous
notes played with finger 5 are changed to the previous fingering of the long note. This is
exactly what the SwapPart move can do, it allows us to change the fingering of longer notes
in a polyphonic piece. This neighbourhood has a size of 4t.
A SwapPart neighbourhood from the example piece in Figure 4 would contain 48 moves.

(a) Change1 (b) Change2 (c) SwapPart

Figure 5: Examples of a move from the different neighbourhoods.

In order to select a solution from a neighbourhood as the new current solution, a move strategy
has to be selected. In this paper, two different strategies were implemented, namely steepest and
first descent. In a steepest descent strategy, the entire neighbourhood is calculated before the
solution with the biggest improvement is selected. In a first descent strategy, the first solution
that improves the current solution is selected. In Section 5, we study the influence of the chosen
move strategy on the solution quality and the execution time.

Figure 3 shows how the different neighbourhoods are chained in the VNS strategy. The al-
gorithm continues to perform a LS in a neighbourhood until it reaches a local optimum. The
algorithm then moves on to the next neighbourhood, and continues until no better solution is
found. When the local optimum of the last neighbourhood in the chain (Change2) is reached, the
algorithm starts from the first neighbourhood again. The flowchart shows a split after the initial
Swap step. This indicates that the order of Change1 and SwapPart is chosen randomly (with a
50–50% probability) by the algorithm. The reason for this design choice is that the best order
is fragment dependent. The performance of both neighbourhoods depends on the monophonic or
polyphonic character of a fragment.

This search strategy continues until none of the three LS neighbourhoods can find a better
solution. When such a local optimum is reached, this solution is compared to the best solution
up to that point. When it is better, it is stored as the new best solution and the number of
iterations without improvements is reset to zero. If the current solution is not better than the best
solution, the number of iterations without improvement is compared with the stopping parameter
(maximum allowed number of iterations without improvement). When the maximum number

Preprint accepted for publication in International Transactions of Operations Research.
Special Issue on Variable Neighbourhood Search, Published online on 2 October 2015,

DOI: 10.1111/itor.12211.

11
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of iterations without improvement is reached, the algorithm stops. Otherwise, a perturbation is
performed on the best solution found so far. This new solution is then handed back to the Swap
step and a new iteration of the algorithm is initialised.

The perturbation splits up the piece in different parts. A set of subsequent slices is selected
in each part. The fingerings in the selected slices are replaced by new ones. The new random
fingerings are chosen only from unused fingers per slice in order to guarantee the feasibility of the
solution. The size of the parts and the set of slices within each part are defined as a percentage
of the length of the piece and the number of slices in each part respectively. This approach is
preferred over changing the fingering of random notes spread across the piece, because it is very
likely that in polyphonic music such changes are infeasible. For example, if you have a chord of
five notes, you have to remove at least the fingering of two notes in order to obtain a feasible
perturbed solution. Hence, perturbing entire sets of consecutive slices results in the best option.

The VNS algorithm has been implemented in C++ and is available as Open Source software4.
For inputting sheet music and outputting sheets with annotated fingerings the MusicXML format
is used. This format was designed for easy interchangeability (Good, 2001). They can be read by
most music notation software, including the open source program MuseScore5, which was used to
visualise the results in this paper.

5 Experiments

The algorithm developed in Section 4 brings up the need for decisions concerning the parameter
setting of its different components (e.g., size of the perturbation) that ensure optimal performance.
Two experiments were conducted in order to base the choice of these parameters on a thorough
statistical analysis. First, we describe the experiment conducted to determine the settings that
are used by the intensification phase of the VNS. Afterwards a second experiment was carried out
to set the parameters of the entire VNS.

Independence of these two parameter groups is assumed, an approach similar to the one used
by Palhazi Cuervo et al. (2014) in their experiments, focusing on a subset of parameters. The
resulting best parameters of the first experiment are implemented in the second. By setting up
the experiments like this, the computing time decreases. It is reasonable to assume that the
performance of the intensification phase is independent of the entire VNS framework. Hence,
the experiment can be split in two sub-experiments. As a result, instead of having to test A · B
combinations, we only have to test A + B combinations.

Both experiments were run ten times on ten pieces of one to three pages in sheet music notation.
All experiments were run on a 2.93 GHz Intel Core i7 processor.

5.1 Intensification phase

The goal of the first experiment is to determine the optimal values for the parameters of the
intensification phase. It takes five parameters into account. The four parameters step swap and
nbh X indicate the inclusion (On) or exclusion (Off) of the improvement step or the respective
neighbourhood in the algorithm. A final parameter improv strat indicates the use of steepest
descent or first descent as the improvement strategy. An overview of the tested parameter values
is given in Table 3. The impact of these parameters on two dependent variables is studied: the
solution quality and the computing time. The quality of the solution is measured through the
summed scores of the objective functions for the left and right hand, denominated Objective

function. The variable Runtime is equal to the total computing time (user time) used for one
test run.

A full factorial experiment was conducted on ten different classical input pieces from varying
style periods. For every piece, 25 or 32 executions of the algorithm were performed. This was

4http://dorienherremans.com/automatic-piano-fingerings
5Available from musescore.org.
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5.1 Intensification phase 5 EXPERIMENTS

repeated ten times for every piece. Since we considered a benchmark set of ten pieces, a total of
3200 observations was obtained.

Table 3: Tested values of the parameters for the intensification phase experiment.

Parameter Values

step swap Off, On
nbh change1 Off, On
nbh change2 Off, On
nbh swapp Off, On
improv strat Steepest, First

The data generated by the experiment was analysed by means of a mixed-effects analysis of
variance (ANOVA) using the statistical software JMP. The model considers the name of the piece
as a random effect and includes second degree interaction effects. The p-values of the F -tests
listed in Table 4 indicate the significance of the impact of the different parameters. The table
also includes parameters with interesting, significant interaction effects. This table shows that
the inclusion of the preprocessing step and the activation of each neighbourhood has a significant
impact on the performance of the algorithm in terms of the Objective function. The mean
plots in Figure 6 show that including a component in the algorithm has a positive impact on its
performance.

When examining the influence of the improv strat parameter, it is important to notice that
using steepest or first descent has no impact on the Runtime, nor on the Objective function

(see Table 4). This was verified by a non-significant first order effect in the models where only
first-order effects were included. When looking at the impact of some significant interaction effects
on the execution time in the extended model (see Figure 7), it becomes clear that the impact of
the improvement strategy on the Runtime is neighbourhood-dependent. In Change1, first descent
appears to be the fastest strategy, but in Change2, steepest descent is significantly faster.

Figure 8 shows the evolution of the score over time of a run of the algorithm with steepest
versus first descent. It is apparent that first descent requires more moves to arrive at a similar
final solution, as the improvements are smaller than those of steepest descent. These smaller
steps however generally take less time, as the algorithm does not have to search through the entire
neighbourhood. As a result, first improvement improves faster at the beginning of a run. However,
the described inverse relationship between the improving capacity of a move from an improvement
strategy on one hand and and its time required on the other hand, causes both strategies to
converge after a while and obtain similar results, which is confirmed by the high p-value of this
parameter.

Based on the analysis above, the Swap step and every neighbourhood are included in the
optimal design of the algorithm. The chosen improvement strategy is steepest descent, as it

Table 4: p-Values for an extract of the F -tests in the ANOVA model of Objective function and Runtime

for the intensification phase experiment.

Parameter Objective function Runtime

step swap <0.0001 * 0.4927
nbh change1 <0.0001 * <0.0001 *
nbh change2 <0.0001 * <0.0001 *
nbh swapp <0.0001 * <0.0001 *
improv strat 0.6496 0.1273
nbh change1*improv strat 0.3960 <0.0001 *
nbh change2*improv strat 0.2772 0.0025 *

* significant at α = 0.05
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Figure 6: Mean plots for the intensification phase experiment.
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intensification phase experiment.
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Figure 8: Evolution of the score over time with steepest and first descent.

appears to be slightly better and faster. An overview of these optimal values is given in Table 5.

Table 5: Best values of the parameters resulting from the intensification phase experiment.

Parameter Value

step swap On
nbh change1 On
nbh change2 On
nbh swapp On
improv strat Steepest descent

5.2 Entire VNS

In this section, a second full factorial experiment is set up to identify the parameter settings
related to the entire VNS. The same ten pieces are used and the optimal parameter settings of
the previous experiment are used within the local search. Three parameters need to be set on the
VNS level. The values tested in this experiment are displayed in Table 6. The number of allowed
iterations without improvement is given by the parameter nrofiterations. The total amount of
fingerings changed randomly by the perturbation is given by sizeofpert as a percentage of the
total number of slices in a piece. The parameter partsize indicates the size of the perturbed parts
as a percentage of the number of slices. A partsize of 25% e.g., results in four parts as described
in Section 4. The studied dependent variables are the same as in the previous experiment, namely
Objective function and Runtime. Preliminary tests showed that increasing nrofiterations

beyond 10 and sizeofpert beyond 20 did not yield solutions of much better quality, therefore the
parameters were cut off at these values. After running all 43 or 64 possible parameter combinations
ten times on the ten different pieces, a total of 6400 observations was obtained.

Similar to the previous subsection, a mixed-effects ANOVA was performed in JMP. The in-
stance name was defined as a random effect. Second degree interaction effects were included to
see how the performance of the entire VNS is influenced by different combinations of parameters.
Table 7 shows that the three tested parameters have a significant impact on both of the dependent
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Table 6: Tested values of the parameters for the entire VNS experiment.

Parameter Values

nrofiterations 1, 4, 7, 10
sizeofpert 5%, 10%, 15%, 20%
partsize 10%, 25%, 50%, 100%

Table 7: p-Values for the F -tests in the ANOVA model of Objective function and Runtime for the
entire VNS experiment.

Parameter Objective function Runtime

nrofiterations <0.0001 * <0.0001 *
sizeofpert <0.0001 * <0.0001 *
partsize <0.0001 * <0.0001 *
nrofiterations*sizeofpert <0.0001 * <0.0001 *
nrofiterations*partsize 0.0918 0.0015 *
sizeofpert*partsize 0.6670 0.9252

* significant at α = 0.05

variables (Objective function and Runtime). The impact of the parameter partsize is shown
in a mean plot (Figure 9). The best performance is obtained with parts of 25%, or 4 parts per
piece. Increasing the value of nrofiterations and sizeofpert will, as expected, result it solu-
tions of better quality. The Runtime will however be higher. Table 7 confirms that the interaction
effect between these two variables has a significant impact on Objective function and Runtime.
The combined influence of both parameters on the score and time is visualised in Figure 10. One
can see that the marginal performance enhancement of an increase in one of these two parameters
is less when the other parameter already has a high value. Moreover, the required execution time
would increase. As a result, increasing nrofiterations beyond ten and sizeofpert beyond 20%
will not increase the quality of the solution by much, only the execution time would go up.

The best performing parameter settings resulting from the above analysis are ten iterations
without improvement and four parts (each of 25% of the piece) of which 20% of the notes are
perturbed with each iteration. These parameters are displayed in Table 8.

Table 8: Best values of the parameters for the entire VNS experiment.

Parameter Values

nrofiterations 10
sizeofpert 20%
partsize 25%
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Figure 9: Mean plot of the size of the parts for the entire VNS experiment.
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Figure 10: Interaction effect between the size of perturbation and the number of iterations for the entire
VNS experiment.

6 Results

In this section, the performance of the VNS with the optimal parameter settings and its musical
output are analysed. First, the output for a monophonic piece is discussed. This analysis is
followed by the discussion of the output for polyphonic music. Finally, the difficulty of generated
fingerings for respectively small, medium and large hands are compared.

6.1 Output for monophonic music

A fingering was automatically generated for Menuet 4 of Christian Petzold (formerly attributed to
J.S. Bach) (BWV Anh. 114). This piece was not used during the tuning experiment in the previous
section. The solution for both hands was computed in 110 seconds. The evolution of the score over
time in the right hand is displayed in Figure 11. It shows that the perturbation strategy allows
the algorithm to escape from local optima. After reaching a local optimum in one neighbourhood,
new and better solutions become available in a previously exhausted neighbourhood, proving the
effectiveness of the VNS strategy.

The output for the first eight bars of the piece is shown in Figure 12. The bold, circled
fingerings are those that the composer or editor of a music sheet book prints on the sheets, so
that the pianist automatically knows the rest of the fingering. In this paper, the fingerings are
retrieved from sheets on IMSLP (2014). Compared to this given solution, in this excerpt only one
finger was different from the one generated by the algorithm, in the sixth bar of the excerpt. In
the remainder of this piece, a few other small sequences require manual changes.

6.2 Output for polyphonic music

A similar analysis was done based on a more complex, polyphonic piece, the first variation on the
Saraband from G. F. Händels Suite in D minor (HWV 437). The final solution was computed in 38
seconds. This is less than the monophonic piece for two reasons. First, we see that this polyphonic
piece is shorter than the monophonic piece, containing respectively 156 and 203 notes. Secondly,
a comparison of the graphs in Figures 11 and 13 shows that the time-consuming operator Change2
requires more time in the monophonic piece.
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Figure 11: Evolution of the score over time in Menuet 4 (BWV Anh. 114) by Christian Petzold (formerly
attributed to J.S. Bach).

Figure 12: Output for the first eight bars of Menuet 4 (BWV Anh. 114) by Christian Petzold (formerly
attributed to J.S. Bach).
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Figure 13: Evolution of the score over time in the first variation on the Saraband from Suite in D minor
(HWV 437) by G.F. Händel.

The evolution of the score over time is included in Figure 13. The graph shows that better
solutions keep being found, even after a long while. The output for the first eight bars of this
piece is displayed in Figure 14. Only a few fingers (indicated in bold and circled) differ slightly
from a printed version published on IMSLP (2014). The generated solution is fluently playable
according the authors’ subjective opinion, and only requires minor corrections. The output shows
that only the fingers of short notes should be changed into adjacent fingers to obtain the fingering
suggested by printed sources.

A well known piece of piano music which encompasses complex polyphony with multiple voices
is the Contrapunctus XIV from J.S. Bach’s Die Kunst der Fuge (BWV 1080), since it contains
four simultaneous voices. Figure 15 displays the third movement, which is based on the BACH
theme6. The conclusions from above remain valid in this complex piece. The sequence of the finger
assignments follows the separate musical voices very well and there are only minor differences
compared to the textbook fingerings.

An interesting issue comes up in bar 19, where the E4 in the second voice played on the second
beat of the bar, cannot be played in one hand together with the A5. In practice, the E4 will be
played by the thumb of the left hand. The assignment of different hands to a note is currently not
included in the algorithm. This will be added in future versions of the software, as is discussed in
the final section of this article.

6.3 Impact of hand size on fingering difficulty

The influence of the hand size on the difficulty of piano fingerings, measured by the objective
function, is analysed in this subsection. Three types of hands were defined, a small, medium and
large hand. The physical dimensions of a large hand are shown in the distance matrix in Table 1,
while those for a small and a medium hand are included in Appendix A. The VNS was applied

6The first four notes are pronounced as BACH in German: B flat, A, C, B natural (H in German)
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Figure 14: Output for the first eight bars of the first variation on the Saraband from Suite in D minor
(HWV 437) by G.F. Händel.

Figure 15: Output for the first 21 bars of the third movement of Contrapunctus XIV from Die Kunst
der Fuge (BWV 1080) by J.S. Bach.
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Figure 16: Mean plot for the difficulty of a fingering for each piece using different hand sizes.

to generate fingerings for 5 different pieces. For each piece, the three different hand types were
tested separately. For each combination of piece and hand type, 10 outputs were generated. This
resulted in a total of (5 · 3 · 10 =)150 observations. Three Wilcoxon signed-rank tests were used to
test if significant differences exist between the mean value for the Objective function for each
hand type. Since the objective function is a penalisation for hard to play sequences of notes with
a certain fingering, it can be seen as a measure of difficulty of playing. The results of these tests
showed that the difficulty of the fingering generated with large hands is significantly lower than
the one for medium hands (p < 0.0001) and the one for small hands (p < 0.0001). In addition, the
difficulty for medium hands is lower than the difficulty for small hands (p < 0.0001). Figure 16
graphically confirms these findings by showing the average difficulty for each hand size.

The above conclusions are to be expected. Given maximal stretch of a certain finger pair for
a large hand will incur a higher difficulty score when using a small hand, because the maximal
allowed distance between these fingers will be smaller. As an example, in the second bar of Händels
Saraband in Figure 14, the distance between A2 and G3 is fingered respectively with finger 5 and
2 in a large hand. For a smaller hand, the algorithm gives the fingering 5 and 1 as output, because
fingers 5 and 2 would be less suited for a small hand to overcome this distance on the piano. This
results in worse scores for smaller hands.

7 Conclusions and future research

A good piano fingering is important for a pianist in order to play a piece fluently. We expanded
the problem of finding a good piano fingering in order to deal with complete pieces of complex
polyphonic music. By basing our evaluation metric on user-specific finger distances, personally
tailored solutions can be obtained. In this paper, we developed an efficient VNS algorithm to solve
the piano fingering problem in a short amount of time. Whenever a local optimum is reached,
a perturbation is performed on the best solution which allows the algorithm to continue the
search. Two full factorial experiments were performed to find the optimal setting for each of the
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components of the VNS. We also showed that all the introduced neighbourhoods have a significant
added value. An analysis of the output confirmed the efficiency of the algorithm and its ability to
find a good, musically meaningful solution which requires only minimal manual adaptations. The
quality of the solution might further be improved by allowing the VNS to run for a much longer
time, or by future improvements to the algorithm on one hand and to the objective function on
the other hand.

The algorithm might become more powerful if extra neighbourhoods are added. If groups of
required manual adaptations show similar characteristics, they might be converted into a move
type, as long as the local modification remains small enough to guarantee a limited runtime
and high efficiency. Additionally, a mathematical formulation of the problem could lead to the
implementation of an exact algorithm, which could be used to find the best possible solution. It
would be interesting to compare the performance and output quality of both approaches.

The algorithm currently suggests the crossing of hands when needed, given that the score
correctly indicates which notes are to be played with which hand7. This is, however, not always
the case in existing sheet music, as can be seen in Figure 15. It would therefore be interesting
to optimise the choice of hands for each note in a future version of the algorithm. This might
be done by allowing the algorithm to move notes from one hand to another when the distance to
the closest note(s) in the other hand is below a certain value and when the other hand is not yet
fully used, i.e. less than five notes are played simultaneously. Other limitations of the algorithm
include special cases such as grace notes and time signature changes.

Another possible improvement could be attained by taking musical sentences into account
when new solutions are calculated. Our VNS algorithm reads a whole piece at once, calculating
one objective function for each hand in the entire piece. The execution time could be reduced by
splitting up a piece into smaller parts for which an individual objective function is calculated, thus
reducing the number of possible solutions and neighbourhood sizes. Such a split could be made
when a rest is encountered or between two arches, indicating musical sentences.

Another way to make the algorithm work faster is by replacing the generation of a random
initial solution by a greedy heuristic that takes into account the relative pitch of the notes within
a slice and over the subsequent slices. These could be matched as much as possible to the relative
order of the used fingers in the fragment, without compromising the feasibility of the solution.
The impact of the initial solution generation could be quantified through another computational
experiment.

To obtain the best possible solution, the set of rules composing the objective function must
be as accurate as possible to reflect the true difficulty of a solution. An alternative approach to
deal with this somewhat arbitrary score selection could be to learn the weights based on a corpus
of existing piano fingerings.

It might also be useful to implement extra rules from two categories. Firstly, interpretational
rules are considered. An example of this type of rule is one that favours the use of a strong finger
(e.g., the thumb) on the first beat of a bar or a musical sentence. In this paper, it was decided
not to do this for two reasons. On one hand, it is not a general rule for every genre to have the
first beat stressed. A saraband, e.g., is a dance in which the second beat is stronger. On the other
hand, these obvious rules are only a small subset of the interpretational rules, which are piece,
genre, pianist and composer dependent (Newman, 1982; Bamberger, 1976). In order to draw good
conclusions about a trade-off between interpretation and easiness of a fingering, additional research
should be done. One possible approach would be to first define an extensive set of interpretational
rules. Then, the impact of each rule might be learned based on specific performers and styles. A
second type of rules are those that enhance the memorisation of a piece. Such a rule could for
instance favour identical fingering patterns for similar note sequences.

Another possible extension of our research would be to use the fingering to determine the
difficulty level of a piece. This could be used by score analysing systems as described by Sébastien
et al. (2012). Such an application is related to the experiment in Section 6.3, where it is shown that
the objective function is worse when a pianist has smaller hands. This objective function score

7Right hand notes in the upper staff, left hand notes in the lower staff.
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might be interpreted as an increased difficulty factor. Hence the use of the presented objective
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Mladenović, N. & Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24 (11), 1097–1100.

Nakamura, E., Ono, N. & Sagayama, S. (2014). Merged-output hmm for piano fingering of
both hands. In Proceedings of the 15th international society for music information retrieval
conference (pp. 531–536).

Newman, W. S. (1982). Beethoven’s fingerings as interpretive clues. Journal of Musicology , 1 (2),
171–197.
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Table 9: Example distance matrix for a small right hand (adapted from Parncutt et al. (1997)).

Finger pair MinPrac MinComf MinRel MaxRel MaxComf MaxPrac

1-2 -7 -5 1 3 8 10
1-3 -6 -4 3 6 10 12
1-4 -4 -2 5 8 11 13
1-5 -2 0 7 10 12 14
2-3 1 1 1 2 4 6
2-4 1 1 3 4 6 8
2-5 2 2 5 6 8 10
3-4 1 1 1 2 2 4
3-5 1 1 3 4 6 8
4-5 1 1 1 2 4 6

Table 10: Example distance matrix for a medium right hand (adapted from Parncutt et al. (1997)).

Finger pair MinPrac MinComf MinRel MaxRel MaxComf MaxPrac

1-2 -8 -6 1 5 8 10
1-3 -7 -5 3 9 12 14
1-4 -5 -3 5 11 13 15
1-5 -2 0 7 12 14 16
2-3 1 1 1 2 5 7
2-4 1 1 3 4 6 8
2-5 2 2 5 6 10 12
3-4 1 1 1 2 2 4
3-5 1 1 3 4 6 8
4-5 1 1 1 2 4 6
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