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Abstract

Numerous studies in the field of music generation have demonstrated impres-

sive performance, yet virtually no models are able to directly generate music to

match accompanying videos. In this work, we develop a generative music AI

framework, Video2Music, that can match a provided video. We first curated a

unique collection of music videos. Then, we analysed the music videos to obtain

semantic, scene offset, motion, and emotion features. These distinct features are

then employed as guiding input to our music generation model. We transcribe

the audio files into MIDI and chords, and extract features such as note density

and loudness. This results in a rich multimodal dataset, called MuVi-Sync, on

which we train a novel Affective Multimodal Transformer (AMT) model to gen-

erate music given a video. This model includes a novel mechanism to enforce

affective similarity between video and music. Finally, post-processing is per-

formed based on a biGRU-based regression model to estimate note density and

loudness based on the video features. This ensures a dynamic rendering of the

generated chords with varying rhythm and volume. In a thorough experiment,

we show that our proposed framework can generate music that matches the

video content in terms of emotion. The musical quality, along with the qual-

ity of music-video matching is confirmed in a user study. The proposed AMT

model, along with the new MuVi-Sync dataset, presents a promising step for
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the new task of music generation for videos.

Keywords: Generative AI, Music Generation, Transformer, Multimodal,

Affective Computing, Music Video Matching

1. Introduction

In today’s digital era, social media platforms such as YouTube have revolu-

tionized the way that videos are consumed and shared. These platforms have

given rise to a new form of entertainment, where captivating visuals are often

complemented by carefully curated background music. While the advancements

in mobile device technology have made it easier than ever to capture high-quality

videos, the challenge of finding suitable background music that perfectly aligns

with the video content remains a daunting task, and such music is often subject

to copyright. In this work, we aim to provide a solution for this by developing

a framework, called Video2Music, for music generation to match video.

The integration of suitable background music in videos is crucial in elevating

the overall viewer experience as well as eliciting the desired emotional response.

A well-chosen soundtrack can enhance the storytelling, reinforce the mood, and

intensify the impact of the visual narrative (Littlefield, 1990). However, the

process of hand-selecting music tracks that synchronize perfectly with the visual

elements of a video is far from trivial. It requires a deep understanding of musical

composition, genre, tempo, and the ability to discern the intricate nuances and

dynamics of both the video and the accompanying music. In addition, since this

music is often pre-composed, its mood and tempo do not dynamically adapt to

the video.

The issue of copyright further compounds the complexity of this endeavor.

The availability and licensing restrictions associated with commercially pro-

duced music tracks limit the choices available to video creators, often compro-

mising the level of alignment and cohesiveness between the visuals and the mu-

sic. Although there has been some recent work on music matching/recommendation

for video (Thao et al., 2023), solely recommending existing music does not over-
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come these issues.

There are very few studies that tackle the task of music generation for video.

Some of the pioneering attempts include models like V2Meow (Su et al., 2023)

and Controllable Music Transformer (CMT) (Di et al., 2021), but these are

few and far between, underlining the vast potential that lies in this under-

explored territory. The recent V2Meow model (Su et al., 2023) synthesizes

waveforms directly from video. Music generation models have typically been

MIDI-based (Herremans et al., 2017), as this offers a finer-grained control and

offers composers the opportunity to use the generated MIDI in their Digital

Audio Workstations (DAWs). Other work, such as Di et al. (2021)’s CMT

offers a promising first step in MIDI generation for music. Their model does

not use a joint music-video dataset, but instead first defines the relationship

between music and video based on three characteristics: timing, motion speed,

and motion saliency.

A number of limitations have hindered the development of existing music

generation models for video. First and foremost, the scarcity of comprehensive

and diverse datasets that incorporate both audio MIDI as well as synced video

has hampered the advancement of this field. Furthermore, while a handful of

music generation models for video do exist, they remain relatively scarce due

to the challenge of effectively synchronizing music with the visual dynamics of

videos.

To address these limitations, we propose a novel AI-powered multimodal

music generation framework called Video2Music. This framework uniquely uses

video features as conditioning input to generate matching music using a Trans-

former architecture. By employing cutting-edge technology, our system aims

to provide video creators with a seamless and efficient solution for generating

tailor-made background music. The overview of our Video2Music framework is

shown in Figure 1.

To overcome the scarcity of existing models and the underlying data gap,

we introduce MuVi-Sync, a novel dataset comprising popular music videos with

a large collection of extracted video and music features. We opted to work
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Figure 1: Overview of our proposed Video2Music. In the training phase, we

extract features from the audio file as well as the video frames and subsequently

train the transformer model to predict chord sequences given video. We imple-

mented two losses (chord loss and affective matching loss) to train the model.

In the inference phase, the uploaded video and primer chords and key from the

user are fed into the trained model to generate chord sequences. In the post-

processing phase, we estimate note density and loudness from the input video

and use them to synthesize the matching MIDI.

with music videos, as these have been specifically designed with a focus on

synchronization between music and video. From the video tracks, we extract

semantic, scene offset, motion, and emotion features from these videos. These

features serve as essential guidance and conditioning for our music generation

model. From the music audio tracks, we transcribe the chords (used for training

the generative model) as well as a MIDI file. From these MIDI files, we extract

the note density and loudness features. These features are used to construct

a biGRU-based regression model for post-processing, which is able to estimate

note density and loudness from video features. This mechanism allows for the
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generation of music with varying rhythms and volume levels.

The core of our proposed Video2Music framework is a novel Affective Multi-

modal Transformer (AMT) model, which generates chords given a video. This

model consists of two fundamental components: an encoder, which takes the

extracted input features from the video as a conditioning factor, and a decoder

which takes input features associated with chords and keys extracted from the

audio during training as well as conditioning from the decoder, and learns to

predict new chords during inference. It is essential to underscore the distinc-

tive features that set our AMT model apart from previous research that uses

Multimodal Transformers. Multimodal Transformers have previously been used

for a variety of tasks that involve understanding and generating relationships

between different modalities of data, such as: Image captioning (Yu et al., 2019;

Li et al., 2019), Visual question answering (Khan et al., 2020; Gao et al., 2023),

and Video summarization (Zhao et al., 2022; Narasimhan et al., 2021; Zhu et al.,

2023). Notably, our model pioneers the application of Multimodal Transform-

ers to the specific task of music generation for video, addressing the challenge

of limited training data in this domain. Our AMT model not only captures

intricate relationships between video and music data but also incorporates a

novel mechanism for enforcing affective similarity, ensuring a more nuanced and

emotionally resonant music-video correspondence. We have set up an extensive

experiment, including an objective experiment, as well as a subjective listening

study, which shows that our proposed Video2Music framework is able to suc-

cessfully generate music that matches video, with a quality that outperforms

the baseline models.

Our approach is innovative in several ways: 1) Affective Matching: Our AMT

model not only captures music-video relationships but also incorporates a novel

mechanism for enforcing affective similarity. This ensures that the generated

music evokes emotions that resonate with the video’s mood and content. 2)

Comprehensive Transcribed Dataset: We introduce the MuVi-Sync dataset, an

openly available resource containing video and music features extracted from

music videos. This rich dataset provides invaluable training data for our model.
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3) Expressive Music Generation: Video2Music generates chords, allowing for

further customization of expressivity during post-processing. During the latter,

a bi-GRU model estimates the note density and loudness based on video features,

enabling generation of music with dynamic rhythms and volume levels.

In sum, our music generation system represents a pioneering approach to

tackle the novel task of music generation for video.

Our contributions are as follows:

1. We developed one of the first generative music models that match music

to a given video, by steering emotional alignment.

2. We collected an openly available music video dataset, called MuVi-Sync,

that consists of video features (scene offset, emotion, motion, and seman-

tic) and music features (chord, key, loudness, and note density).

3. Our proposed music generation framework utilizes cutting-edge technol-

ogy: 1) Transformer model for generating chord sequences that match

video, and 2) a bi-GRU model for estimating note density and loudness

which are used in a post-processing stage. The source code of our proposed

framework and the trained models are available online1.

4. We conducted extensive experiments and showed that our proposed model

outperforms baseline models in terms of music-video correspondence as

well as chord prediction accuracy.

In the rest of the paper, we first present the related literature in Section 2.

This is followed by a description of how we created the new dataset (Section 3),

after which we present the details of our proposed Video2Music framework in

Section 4. Finally, we describe our experimental setup (Section 5) and its results

together with a discussion (Section 6). Finally, Section 7 offers conclusions from

this work.

1https://github.com/AMAAI-Lab/Video2Music
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2. Related Work

We will provide a brief overview of existing Transformer-based music gen-

eration systems, followed by a description of music generation for video. In

this section, we do not aim to give an exhaustive overview of music generation

systems, for this, the user is referred to Herremans et al. (2017), Civit et al.

(2022), and Briot et al. (2020).

2.1. Transformer-based Music Generation

Patterns and long-term structure are key features of music (Herremans &

Chew, 2017; Herremans et al., 2015). Hence, a few years ago, recurrent neural

network architectures were welcomed for music generation (Chuan & Herremans,

2018; Hadjeres & Nielsen, 2020; Goel et al., 2014; Sturm et al., 2019). Up until

then, these models typically surpassed other architectures in terms of long-

term structure. Other types of models, however, may have their own strengths,

e.g. VAEs are known for feature disentanglement (Tan & Herremans, 2020; Guo

et al., 2020), hybrid optimization approaches can constrain patterns (Herremans

& Sörensen, 2013; Herremans & Chew, 2017), and embedding methods such as

word2vec are known for learning representations (Chuan et al., 2020; Huang

et al., 2016).

In recent years, the Transformer architecture, introduced by Vaswani et al.

(2017), has emerged as a dominant force in temporal sequence processing, sur-

passing traditional Recurrent Neural Networks (RNNs) in various domains. This

shift towards Transformers is not confined to the realm of natural language pro-

cessing; it extends to diverse fields such as computer vision (Arnab et al., 2021;

Ding et al., 2023), audio processing (Gong et al., 2021), and even reinforce-

ment learning (Chen et al., 2021). The self-attention mechanism inherent in

Transformers allows them to capture long-range dependencies more effectively,

contributing to their success in handling sequential data across different do-

mains. The use of Transformers has also become a trend in the field of music

generation, with numerous approaches exploring the potential of Transformers

as described in what follows.

7



Huang et al. (2018) proposed a Music Transformer to generate Chorales

as well as classical piano pieces, of length 2,000 tokens. To the best of our

knowledge, it is the first Transformer-based model developed to generate music.

Other models soon followed, for instance, Payne (2019) presented MuseNet,

a GPT-2-based Sparse Transformer model, that can generate music pieces that

are up to 4 minutes long with 10 different instruments and various styles. The

Sparse Transformer does not use relative attention, but instead implements full

attention over a total of 4,096 tokens. This makes it is better suited for capturing

long-term structure. Both MuseNet and Music Transformer use decoder-only

Transformers. In both of these models, the teacher-forcing algorithm during

training.

Both of these systems also use a cross-entropy loss, which is not a real mea-

sure of musical quality. Zhang (2020) attempted to solve this issue by proposing

an Adversarial Transformer that produces high quality classical guitar music. In

the adversarial Transformer model, the self-attention architecture is combined

with generative adversarial learning, whereby the generator is a decoder-only

Transformer, and the discriminator is an encoder-only Transformer. In addi-

tion, adversarial objectives are used as a strong regularization for enforcing the

Transformer to focus on learning the local and global structures.

The success of Transformers for music generation is confirmed by the many

models that have followed in the subsequent years. For instance, Wu & Yang

(2020) presented a jazz Transformer for the task of generating monophonic

jazz solos, which is based on the Transformer-XL model. Other adversarial

models include that of Muhamed et al. (2021), who developed a model for

piano music generation based on adversarial training of a Transformer model.

As a generator, they used Transformer-XL and as a discriminator, they used

BERT to extract the sequence embeddings followed by a pooling and a linear

layer. In an experiment, they showed that their Transformer-GAN achieves

better performance compared to other Transformer models that were trained

by maximizing the likelihood alone. Finally, Calliope was presented by Valenti

et al. (2021), and is a polyphonic music generation system based on adversarial
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autoencoders (AAE). A Transformer architecture is used for the encoder and

the decoder while a multi-layer perceptron is used for the discriminator.

Transformers have also been used for conditional music generation, which is

in essence what we propose in this paper. Except that instead of conditioning

on key or emotion as is typically done is existing work, we condition on videos.

Makris et al. (2021) proposed an affective and controllable music generation

system that is based on sequence-to-sequence architecture with long-short term

memory (LSTM) and Transformer models. First, a sequence of musical at-

tributes is given as conditions in the encoder stage. Then, this encoded feature

is translated into lead sheet music (chords and melody) in the decoder stage. In

experiments, they show that the Transformer has the best performance and can

generate lead sheets that match desired valence levels. That same year, Choi

et al. (2021) presented a melody Transformer that is conditioned by chords and

that can generate K-POP melodies. Their proposed model consists of two de-

coders: a rhythm decoder (RD) and a pitch decoder (PD). Another conditional

music generation system was developed by Dai et al. (2021). In this system, the

authors aim to model long-term structure through a hierarchical approach and

a music representation called ‘Music Frameworks’. In this system, a full-length

melody is created using a multi-step generative process with a Transformer-

based model. The main idea is to adopt an abstract representation of basic

rhythm forms, phrase-level basic melodies, and long-term repetitive structures.

Then the melody is generated, conditioned on the basic melody, rhythm and

chords in an auto-regressive manner. Their proposed architecture contains two

elements: 1) an encoder which learns a feature representation of the inputs using

two layers of Transformers and 2) a decoder which combines the last predicted

note and the encoded representation as input and feeds them to one unidirec-

tional LSTM to produce the final output which is the predicted next note. They

demonstrated from a listening test that generated music pieces from their pro-

posed model are rated as good as or better than the music pieces from human

composers.

In very recent work, Transformer architectures have also been used in Diffu-

9



sion networks for monophonic symbolic music generation (Mittal et al., 2021),

which further shows their ability to model music.

In this work, we will be conditioning our Transformer network on video

features. While many Transformer-based music generation models primarily

focus on generating MIDI files, our proposed model generates chord sequences

that match the video content. Our decision to work with chords is largely due

to the lack of symbolic music-video datasets. Hence we first transcribed the

chords from the audio. Since it is much more accurate to transcribe chords

compared to polyphonic MIDI (Cheuk et al., 2023), we opted to train on chords

as this would propagate the least amount of error. In a post-processing step,

these chords are appropriately arpeggiated and rendered expressively to further

match the mood of the video and create a richer, more intricate sound.

2.2. Music Generation from Videos

The number of papers purely on music generation for video can be counted

on one hand. However, there has been related work leading up to this. Below we

expand on several papers related to generating music that serves as a narrative,

be it for games, video, reconstructing instrument sounds, or other purposes.

In the broader realm of narrative music, the concept of using musical cues

to convey storytelling elements is essential (Herremans et al., 2017). Notably,

the blending of music with other media, such as games and videos, has garnered

substantial interest. For instance, game music, is often produced by cross-fading

between audio files during transitions in game state (Collins, 2008). One early

attempt has been made by Johnson (2006) to dynamically generate music based

on player interactions. Casella & Paiva (2001) proposed an abstract framework

named MAgentA, distinct from Google’s music generation project Magenta,

which aims to enhance the generation of background music for video games.

This framework focuses on producing ‘film-like’ music that resonates with the

emotional atmosphere of the in-game environment. The system achieves this by

employing a cognitive model that captures the mood of the scene and translates

it into musical elements. Any of the more recent music emotion conditioned
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music generation models (Makris et al., 2021; Guo et al., 2020; Herremans &

Chew, 2017) could be used in the future to match music with a game state based

on mood in this way. However, to day, the limited existing research on music

generation models for games uses mostly Markov models (Prechtl, 2016; Engels

et al., 2015) or procedural rules (Plans & Morelli, 2012).

In films, the music component plays an important role in enhancing the

emotional impact of visual narratives (Parke et al., 2007). Leveraging this,

Nakamura et al. (1994) introduced a prototype system for generating back-

ground music and sound effects for short animated films. This system employs

established rules from music theory to create harmonious elements such as har-

mony, melody, and rhythm for each scene. It takes into account variables like

the mood’s intensity and the musical key of the preceding scene to craft music

that complements the visuals. In addition, the system employs an approach

where sound effects are determined based on the distinct characteristics and the

intensity of movements depicted on screen.

In the early 2000s, Dannenberg & Neuendorffer (2003) introduced a novel

approach to music generation based on real-time video images. They explore

the connection between visual imagery and sound by using video of light re-

flected from water to modulate sound spectra in real time. The authors address

challenges in mapping video to sound and handling variations in light levels,

showcasing the potential for video-based control over audio synthesis.

More recently, Di et al. (2021) proposed CMT, a Controllable Music Trans-

former designed to generate background music for videos. This is one of the first

deep learning models to try to generate music from video. In CMT, however,

the video-music relationship, is solely rule-based and based on three key fea-

tures. In contrast, our proposed method addresses these limitations by defining

semantic, motion, scene offset, and emotion features extracted from the video,

ensuring the generation of background music that aligns with the content of

general videos. By considering these comprehensive features, our approach es-

tablishes a stronger connection between music and video.

Finally, Su et al. (2023) proposed V2Meow, a visually conditioned music
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generation system capable of producing high-fidelity music audio from silent

videos. V2Meow utilizes pretrained visual features extracted from silent video

clips to generate music audio waveforms. In addition, it provides control over the

music style through supporting text prompts alongside video frame conditioning.

V2Meow uses audio waveforms as the training input and output instead of

symbolic music data (i.e., MIDI), which makes musical properties less explicit.

It is thus harder for the system to understand musical relationships. As a

result, the generated music lacks coherent musical ideas, logical progression,

and nuanced musical expression. In contrast, our method uses symbolic music

data (e.g., chords, key) so that it can more easily interpret musical structures,

such as harmonic chord progressions and rhythmic patterns. By leveraging these

rules, the generated music is more likely to exhibit a coherent and consistent

musical structure, thus enhancing its quality.

A slightly different task, relates to reconstructing music from instrument per-

formances that lack the accompanying audio (Gan et al., 2020; Koepke et al.,

2020; Su et al., 2020a,b), such as generating piano music from a video of fin-

ger movements on the piano. Recently, related work has appeared that focuses

on generating music for videos that feature dancing or human activities, em-

phasizing rhythmic relationships (Su et al., 2021; Zhu et al., 2022a,b). These

methods, however, necessitate additional motion annotations as input, limiting

their applicability to specific videos and hindering their effectiveness for general

videos encompassing diverse content.

In this work, we focus on generating new (symbolic) music, given a video as

input condition. To achieve this, we first created a new dataset of music videos.

In the next section, we discuss the details of this process.

3. Dataset Creation

One of the key reasons that there are not many generative music for video

systems out there, is the lack of symbolic music with video datasets. Given that

the accuracy of music transcription systems is constantly growing (Cheuk et al.,
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2020, 2021, 2023), especially chord transcription (Park et al., 2019), we set out

to design a novel way to create a dataset. This resulted in a new dataset, called

MuVi-Sync, comprising both music features and video features extracted from

a total of 748 music videos. Below, we describe the music and video features

that we extract from this dataset.

3.1. Music Features

From the audio track of the music video, we extract four essential features:

note density, loudness, chords, and key. These features play a crucial role in

capturing the musical characteristics and composition of the audio. The chord

and key features are utilized to train the decoder component of our Transformer

model. This will help enable the generation of coherent and harmonically aligned

chord sequences that match the video content. We leverage the note density and

loudness features to train a post-processing model that transforms the chords

into an arpeggiated MIDI file that is expressively rendered to better match the

video.

In the next subsection, we provide a detailed description how we obtained

the note density, loudness, chord, and key features after extracting the audio

tracks from the music videos.

3.1.1. Note Density

To compute the note density, we first converted the audio files from the

music video to MIDI files. We used the OMNIZART Music Transcription li-

brary (Wu et al., 2021) to extract polyphonic MIDI files. We are aware that

the transcription accuracy of this system is estimated to be around 72.50% for

frame-level F1-score and 79.57% for note-level F1-score (pitch and onset) on the

Configuration-II test set of the MAPS dataset (Kelz et al., 2016). However, for

our purposes (post-processing), we believe that this is acceptable and will not

influence the generated music too much.

For each transcribed MIDI file, we calculated the total number of notes in

each 1 second interval, and used that value as the note density as shown in
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Figure 2.

Figure 2: Example of how note density is calculated for each 1s time window. In

this example, the estimated note density values are 5, 8, and 4 for the intervals

0s to 1s, 1s to 2s, and 2s to 3s, respectively.

3.1.2. Loudness

To accurately estimate the loudness per second from the audio files, we used

the audioop module from the Python standard library to calculate the root mean

square (RMS) loudness. Subsequently, we convert the RMS loudness values to

decibels (dB) and transform them to a 0-1 scale using the formulas below:

loudnessdB = 20 · log10

(
loudnessRMS

32767

)
(1)

loudnesstransformed = 10loudnessdB/20 (2)

where 0 dB is represented as 1 and negative dB values are mapped to values

between 0 and 1. This transformation process ensures a precise and consistent

measurement of loudness given that decibels align more closely with the human

perception of loudness, and mapping these values to a 0-1 scale further enhances

the interpretability of the loudness value.

3.1.3. Chords

We extracted chord sequences from the audio files by using the Transformer-

based chord recognition model by Park et al. (2019). One chord was detected per
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window of length 1s. This model achieves weighted chord symbol recall (WCSR)

scores of 83.5%, 80.8%, 75.9%, 71.8%, 65.5%, 82.3%, and 80.8%, respectively for

the mir eval metrics (Raffel et al., 2014) of the Root, Thirds, Triads, Sevenths,

Tetrads, Maj-min, and MIREX categories. These scores are acceptable or our

purposes, especially since errors are often minor, e.g. confusing A minor versus

C major or C major with C major seventh. The resulting chord sequences

contain 13 different types of chords, including major, diminished, suspended,

minor seventh (m7), minor, suspended second (sus2), augmented, diminished

seventh (dim7), major sixth (maj6), half diminished seventh (hdim7), seventh

(7), minor sixth (m6), and major seventh (M7).

Figure 3: Chord recognition and normalization procedure. Chord sequences,

along with their respective start and end times, are identified from the audio

file using a chord recognition model. Subsequently, the detected chords are

reformatted to a one-chord-per-second representation. Depending on whether

the recognized key is major or minor, the song’s chords are transposed to either

C major or A minor.

The chord sequence for each file was normalized as per the detected key (see

next subsection). Depending on whether the detected key was major or minor,

we transposed the song’s chords to C major or A minor, respectively. Figure 3

shows the overall procedure to extract and normalize the chords from the music

video.

Figure 4 shows the top 30 normalized chords (to either the C major or A
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minor key) in our dataset. Unsurprisingly, the most popular chords are the

major or minor root chord, followed by the IV, and V.

Figure 4: Top 30 normalized chords (to either the C major or A minor key) in

our dataset.

3.1.4. Key

After extracting the chord sequences, we proceeded to convert them into

MIDI files using simple music theory. For instance, a C major chord translates

to the notes C, E, and G, whereas a C minor 7th chord corresponds to the notes

C, Eb, G, and Bb. We use the start and end times of each chord to precisely

map the duration of each chord to notes in the MIDI file. We can then use the

MIDI files to determine the key of each song. Leveraging the music21 library’s

key detection functionality (Cuthbert & Ariza, 2010), we employed three com-

monly used key finding algorithms: Krumhansl-Schmuckler (Krumhansl, 2001),

Temperley-Kostka-Payne (Temperley, 2007), and Bellman-Budge (Bellmann,

2006).

Each algorithm provides a candidate key for a given song based on different

musicological principles. The choice of these specific algorithms lies in their dis-
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tinct methodologies and proven effectiveness in diverse musical contexts (Kania

et al., 2022). Krumhansl-Schmuckler relies on cognitive principles related to

tonal hierarchies, Temperley-Kostka-Payne integrates probabilistic models, and

Bellman-Budge incorporates harmonic stability considerations. By employing

this combination, we aim to capture a broad spectrum of musical features that

contribute to key identification. To consolidate the results obtained from the

three algorithms, we implemented a voting method. This approach involves

each algorithm ‘casting a vote for the predicted key, and the final predicted key

is determined based on the most commonly selected key among the algorithms.

This ensemble decision-making process enhances the reliability and accuracy of

the predicted key for each song. Figure 5 shows the top 30 keys detected in our

dataset.

Figure 5: Top 30 keys in our dataset (before chord normalization).

3.2. Video Features

If we were to use the raw video frames directly as conditional input to our

generative music model, it would be challenging for the model to effectively
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learn the correspondence between disparate modalities. Therefore, we extract

meaningful features from video as intermediate representations to simplify the

learning process. We extract semantic features, emotion, scene offset, and mo-

tion features to guide the music generation model. We used one video frame for

each second of video to extract the below features. The extraction process for

each of these features is described below.

3.2.1. Semantic features

We harnessed the capabilities of CLIP (Contrastive Language-Image Pre-

training) (Radford et al., 2021), a powerful pretrained model, as a feature ex-

tractor. This model enabled us to encode the raw video frames into semantic

feature tokens without the need for fine-tuning. We utilized CLIP to extract la-

tent features from each video frame. These extracted latent features encompass

a wide range of video semantics, including serene beach scenes, adventurous

outdoor activities, and bustling city streets.

3.2.2. Emotion

To estimate the emotions expressed in a (muted) video on a per-second basis,

we employ the CLIP model (Radford et al., 2021). This model has been trained

on an extensive dataset containing 400 million image-text pairs, providing it

with a robust understanding of the relationship between images and text.

In our case, CLIP serves a dual purpose. Firstly, it extracts semantic features

from the video, as discussed in the previous subsection. Secondly, we include

its probabilities for six emotion classes. By leveraging its pre-trained knowledge

acquired through exposure to diverse image-text pairs during training, CLIP

can provide the probability distribution of different emotion classes (‘exciting,’

‘fearful,’ ‘tense,’ ‘sad,’ ‘relaxing,’ and ’neutral’) for each frame in the video

as shown in Figure 6. The selection of these emotion classes was based on the

MVED dataset (Pandeya et al., 2021) which includes 5,743 music video segments

annotated with six emotion labels (‘exciting,’ ‘fearful,’ ‘tense,’ ‘sad,’ ‘relaxing,’

and ’neutral’).
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To obtain these values for each 1s video, we employ a smoothing window

with a size of 5 for each of the six emotion probability time series. A smoothing

window is a computational tool used to minimize short-term fluctuations or

noise in data. This window moves across the data, and at each position, it

computes the average of the values within the window. The result is a smoothed

version of the original data, where abrupt changes or minor fluctuations are

mitigated, providing a clearer representation of the underlying trends in the

emotion probabilities over time. Since we extract one frame per second, this

means that to calculate the emotion, we look back 5 seconds in time. Essentially,

this method helps reveal the broader patterns by averaging out the smaller,

potentially noisy variations.

3.2.3. Scene offset

We used the PySceneDetect library (Castellano, 2018) to accurately detect

shot changes in videos. Figure 7 shows a few examples of the scene detection

results. Instead of directly utilizing scene IDs as a feature to incorporate scene

change information, we chose to calculate scene offsets based on the detected

scene IDs. By introducing a scene offset value that initiates at 0 and progres-

sively increments until the next scene change, we effectively capture the relative

position of each frame within a scene. This approach allows us to implicitly en-

code the scene change information by considering the temporal distance between

frames within and across scenes.

3.2.4. Motion

To estimate motion or changes in the visual content of the video, we first

computed the RGB Difference between the current frame and the preceding

frame within each one-second interval. This process involves calculating the ab-

solute difference in color values for corresponding pixels across the Red, Green,

and Blue channels independently. Following this, we determined the mean of

all pixel values in the resulting RGB difference image. This computed aver-

age value serves as our motion value feature, effectively representing the overall
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Figure 6: Examples of the CLIP probability results for each of the six emotion

classes.

disparity between corresponding pixels in the two frames for the specified one-

second interval. Figure 8 shows examples of RGB Differences and the resulting

motion values

4. Proposed Video2Music framework

The overall framework of the proposed music generation system is shown

in Figure 9. First, we extract both video features (scene, motion, emotional

flow, and semantic) and music features (chord and key) from music videos for

every second, as described in the previous section. We then concatenate these
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Figure 7: Examples of video frames that belong to the same detected scene.

Figure 8: Examples of RGB difference and the resulting motion value. For static

scenes such as the portrait shot on the right, the motion value is low.

video features into a 2-dimensional sequence, and apply a fully-connected layer

to create the final video embedding vector. The latter is further fed into the

Transformer encoder. The key serves as a conditional input feature, and is

concatenated with the chord embedding. This is crucial because, a song’s key

greatly influences its chord progressions. The resulting chord embedding is

calculated by summing the chord root (e.g., ‘A’) embedding and chord type

(e.g., ‘minor’) embedding. This fusion forms a comprehensive music embedding

vector, which is fed to the Transformer decoder to generate the chord sequences
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that match the input video.

In order for the model to attend to the order of the sequence of music and

video features, we add positional encodings to both the music and video em-

bedding vectors, before feeding it to the encoder and decoder, respectively.

We use the relative position representation (RPR) introduced in Music Trans-

former (Huang et al., 2018) for the masked multi-head attention module of our

Transformer decoder. Our decoder learns to predict the next chord sequences

given input video features as well as the previous chords.

Figure 9: Our proposed Video2Music framework for generating music based on

video. Video features (scene, motion, emotion, and semantic) are extracted from

music videos as well as audio features (chords and key). These features are then

concatenated and processed through a Transformer-based model to generate

expressive chord sequences. A post-processing step estimates note density and

loudness for a dynamic MIDI output using biGRU. This allows us to enhance

the musical expressiveness of the final audio to better match the input video.

Finally, a post-processing step uses a regression model based on bi-directional
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Gated Recurrent Units (biGRU) to estimate the note density and loudness based

on the video features. This way, the resulting MIDI file dynamically adjusts the

rendering of the generated chords, introducing variations in rhythm and volume

for a more expressive musical output that better matches the video.

4.1. Affective Multimodal Transformer

The Transformer model (Vaswani et al., 2017) is an encoder-decoder based

auto-regressive generative model, which was originally designed for machine

translation applications. We adopt the basic architecture of this model and

consider our task as a video to chord translation problem. The core architec-

ture of our proposed Affective Multimodal Transformer (AMT) comprises of

two key components: a Transformer encoder responsible for capturing video

features extracted from the video, and a Transformer decoder that generates

chord sequences by intelligently leveraging the context of preceding chords as

well as employing a cross-attention mechanism that fuses information from both

the musical and visual modalities.

4.1.1. Input Representations

An effective input representation is essential for seamlessly integrating musi-

cal and visual information into the Transformer model. For audio, after extract-

ing the chords at every second of the audio tracks, we disassemble them into

two essential components: the chord root (e.g., C, D) and the chord type (e.g.,

minor, major, diminished). Each component is encoded as a one-hot vector.

Then, we apply an embedding function to both of these vectors. These embed-

dings are then summed, producing a comprehensive chord embedding vector

that encapsulates both the chord root and chord type information.

We concatenate this chord embedding vector with a 1-dimensional vector

that represents the key of the song. Given the key normalization (see Sec-

tion 3.1.3), this vector can simply contain the value 0 for minor and 1 for

major. Finally, this concatenated vector is passed through an embedding layer,

yielding a final input embedding vector with a dimensionality of 512. This en-
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riched embedding vector becomes part of the input for training our Transformer

decoder, together with the video embedding vector, to generate sequences that

match with the video’s content. This entire process is represented by the equa-

tion:

Inputtmusic = PE(Echord(concat(k,Eq(Ct
q) + Er(Ct

r)))) (3)

where Inputtmusic represents the input music vector at a given time t, concat()

represents the concatenation function, and PE() represents the positional en-

coding function which is used to inject information about the position or order

of elements in a sequence into the representation of those elements. The k rep-

resents the key vector that has a value of either 0 (minor) or 1 (major), Ct
q,

Ct
r represents the one-hot chord type vector and one-hot chord root vector at

a given time t, respectively, and Eq(), Er() ,Echord() represent the embedding

functions for chord type, chord root, and chord respectively. Embedding func-

tions are a way to represent categorical variables as continuous vectors in a

high-dimensional space.

We follow a similar procedure for representing the video input, represented

by the equation:

Inputtvideo = PE(FC(concat(V t
scene, V

t
motion, V

t
emo, V

t
sem))) (4)

where Inputtvideo represents the input video vector at a given time t, and V t
scene,

V t
motion,V t

emo, and V t
sem represent the scene offset vector, motion vector, emotion

vector, and semantic vector respectively at a given time t. Finally, FC() rep-

resents a fully connected layer that maps the concatenated video feature vector

into a 512-dimensional space.

4.1.2. Transformer Encoder

In the process of encoding input vectors that represent videos, denoted

as Inputvideo, a Transformer Encoder with L layers is utilized. Each layer

l within the range 1 ≤ l ≤ L takes the current contextual representation
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H(l−1) and transforms it into the subsequent output H(l) through the Trans-

former mechanism. Each layer consist of two primary sub-layers: Multi-Head

Self-Attention and Position-wise Feed-Forward Networks. Within the Multi-

Head Self-Attention sub-layer, the core mechanism is the Self-Attention Mech-

anism (Vaswani et al., 2017), which computes the attention scores as follows:

Attn(Q,K, V ) = softmax

(
QKT

√
Dk

)
V

where Q, K, and V are linearly transformed versions of the input, and
√
Dk

is the scaling factor. The result is a weighted sum of values V based on the

compatibility of queries Q and keys K.

The initial contextual representation is H0, set to be the input vector Inputvideo.

After the final layer (L), we obtain the final contextualized representations, de-

noted as H(L) from Inputvideo, which are subsequently passed into the multi-

modal cross-attention module within the Transformer Decoder for further pro-

cessing.

4.1.3. Transformer Decoder

The Transformer Decoder architecture (Vaswani et al., 2017) is employed in

our Affective Multimodal Transformer (AMT) to generate chord sequences with

long-term dependencies. In the Decoder, music features are processed using a

cross-attention module following a masked multi-head self-attention module.

Simultaneously, the encoded video features from the Transformer Encoder are

used as keys and values.

Specifically, let Inputvideo ∈ RC×H , where C represents the total num-

ber of Chord events contained in a video clip, and H is the hidden dimen-

sion. The Transformer Decoder’s goal is to predict a sequence of Chord events

Outputchord ∈ RC×L where L is the vocabulary size of chord events. At each

time step, the Decoder takes as input the previously generated feature encoding

over the chord event vocabulary and the visual features, to predict the next

chord event.
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In contrast to the standard Transformer model, which uses positional si-

nusoids for timing information, we incorporate relative position representa-

tions (Shaw et al., 2018). These representations explicitly encode the dis-

tance between tokens in a sequence, a crucial consideration for music appli-

cations (Huang et al., 2018). We adopt a strategy similar to Huang et al. (2018)

to jointly learn ordered relative position embeddings R for all possible pairwise

distances among pairs of query and key positions within each attention head:

Attnrelative(Q,K, V ) = softmax

(
QKT + R√

Dk

)
V

For our Transformer Decoder, we first use a masked self-attention module

that incorporates relative position embeddings to encode input chord events.

In this module, queries, keys, and values are all derived from the same feature

encoding and the attention mechanism only takes into account the current and

preceding positions, preserving the sequential nature of the data. The output

of the masked self-attention module, along with the output of the Transformer

Encoder processing the input video features, is then passed into a multi-head

attention module, computed as follows:

Attncross(Qdec,Kenc, Venc) = softmax

(
QdecK

T
enc√

Dk

)
Venc

where Qdec represents the query matrix derived from the Decoder’s hidden

states, Kenc represents the key matrix derived from the Encoder’s hidden states

(used for cross-attention), and Venc represents the value matrix derived from the

Encoder’s hidden states. This cross-attention mechanism enables the Decoder

to focus on relevant information from the input video features while generat-

ing the next chord event, thus facilitating the modeling of music events and

dependencies.

Following the cross multi-head attention layer, the Transformer Decoder

incorporates a pointwise feed-forward layer. This layer plays a pivotal role in

further transforming the encoded information. Subsequently, the output from

the feed-forward layer is passed through a linear transformation followed by a
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softmax activation function. This step is essential for generating probability

distributions over the vocabulary. At this step, each token in the vocabulary

receives a probability score, indicating the likelihood of it being the next token

in the output chord sequence. We include a few hyperparameters to further

improve this selection. For instance, we set the maximum number of repeated

chords to 2 and the maximum number of repeated silences also to 2. In case these

constraints are met, the chord with the second highest probability is selected.

4.1.4. Affective Matching Loss Function

In our proposed Affective Multimodel Transformer (AMT) architecture, the

total loss is calculated as the weighted sum of the loss related to chords, Lchord,

and the loss related to the emotion of the resulting chords, Lemo, as follows:

Ltotal = λLchord + (1 − λ)Lemo (5)

where λ represents a weighting factor that determines the relative importance

of the two individual loss components in the total loss. First, the Lchord can be

calculated as the cross-entropy between the soft targets of the model estimated

by the softmax function, and the ground-truth labels as follows:

Lchord(ychord, z) = −
M∑
i=0

ychordi log

(
exp(zi)∑
j exp(zj)

)
(6)

where M is the total number of classes, ychord is a one-hot vector which repre-

sents the ground-truth label of the training dataset as 1, and zi is the logit (the

output of the last layer) for the i-th class of the model.

Secondly, the Lemotion is defined as follows:

Lemo(yemo, z) = − 1

M

M∑
i=0

yemo
i log(σ(zi)) + (1 − yemo

i )log(1 − σ(zi)) (7)

where yemo is a ground-truth emotion vector that corresponds to the chord

type attributes (e.g. minor, minor 7th, see Section 3.2.2) associated with a

specific emotion of video frame predicted by CLIP model (Radford et al., 2021).
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The matching chord type positions of this vector, which has a similar format

to the output vector of the decoder, that belong to the predicted emotion are

activated. These chord type attributes are compared to the generated chord

qualities. Then, yemo
i is a i-th element of yemo

i , and σ(zi) is the sigmoid function,

which transforms the logit zi into a value between 0 and 1.

To obtain the chord attributes that match the emotion of the video, we use

the following procedure: first, we use CLIP to obtain a probability for each

of our five emotion categories for the video fragment. The choice of these five

emotions (exciting, fearful, tense, sad, relaxing) for mapping to corresponding

chords is grounded in the MVED dataset (Pandeya et al., 2021) as discussed

in Section 3.2.2. Then, we take the emotion with the highest probability, and

use Table 1 to find the matching chord attributes. If an emotion has multiple

chord attributes, this vector can be multiple-hot. For instance, if the highest

predicted emotion from the video is ‘sad’, the elements in yemo that correspond

to the attributes ‘min7’, ‘min’ and ‘sus2’ are set to 1.

Emotion maj dim sus4 min7 min sus2 dim7 maj6 hdim7 7 maj7

Exciting ✓ ✓ ✓

Fear ✓ ✓ ✓ ✓

Tense ✓ ✓ ✓ ✓

Sad ✓ ✓ ✓

Relaxing ✓ ✓ ✓

Table 1: Mapping of emotions with associated chord types based on the in-

sights of professional musicians, music theory (Chase, 2006), and music psy-

chology (Schuller et al., 2010).

Table 1 was derived from insights of professional musicians and music the-

ory (Chase, 2006), and augmented with work from music psychology (Schuller

et al., 2010; Makris et al., 2021). Schuller et al. (2010) provides interesting in-

sights on the connection of chord types with emotions. We base ourselves on

their results to populate the table. For instance, in their results, a maj7 chord

is related to ‘Romance, softness, jazziness, serenity, exhilaration, tranquillity’,

which we find close to our emotion category ‘relaxing’, and a dim7 chord is la-
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beled as ‘Fear, shock, spookiness, suspense’, which clearly falls into our category

‘fear’. Other, less clear or missing, mappings where deliberated with professional

musicians. And example is the sus4 chord, which Schuller et al. (2010) labels

as ‘Delightful tension’. In our table, this chord type maps to both the ‘tense’ as

well as ‘excited’ emotion categories.

4.2. Post-processing to generate MIDI

After the model generates the chords, we perform post-processing to obtain

a playable MIDI file. In this phase, we fine-tune the music’s attributes, ensuring

its harmonious fusion with the accompanying video. This section delves into

the key steps we take to achieve this synchronization.

4.2.1. Loudness and note density estimator

Leveraging the same input video embedding vector used for the Transformer

encoder of our Affective Multimodal Transformer model, we trained regression

models to jointly predict the extracted loudness and note density from the orig-

inal audio. These predicted values are subsequently used to select chord arpeg-

giation patterns and perform MIDI velocity adjustments. This results in music

that boasts nuanced rhythmic variations and dynamic intensities, synchronized

with the video’s mood and tempo.

We explored five difference regression models for estimating note density

and loudness: 1) Fully-connected layer (FC) which was implemented with two

linear layers: the first transforms the input video feature dimension to 512 with

a ReLU activation function, and the second produces a single output unit for

regression, 2) Long short-term memory (LSTM) which employed a dual-layer

LSTM structure, with each layer consisting of 64 nodes, 3) Bi-directional LSTM

(Bi-LSTM) which integrates bidirectionality, resulting in 128 nodes (2 × 64)

to capture information from both directions, 4) Gated recurrent units (GRU)

which employed a dual-layer GRU structure, with each layer consisting of 64

nodes, and 5) Bi-directional GRU (Bi-GRU), which integrates bidirectionality,

resulting in 128 nodes (2 × 64). We use RMSE (Root Mean Square Error) as
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the metric to evaluate the performance of our regression models. This metric

captures the average magnitude of the differences between the predicted and

actual values in a regression problem:

RMSE =

√∑n

i=1

(ŷi − yi)2

n
(8)

where n represents the number of samples, ŷi is the predicted values of i -th

sample, yi is the actual values of i -th sample.

Table 2 shows the Root Mean Square Error (RMSE) of note density and

loudness for the different regression models. As can be seen from the table,

the Bi-GRU model performs best. Hence, in our Video2Music framework, we

adopt the Bi-GRU model to estimate both note density and loudness during

post-processing.

Model RMSE (Note density) RMSE (Loudness)

FC 4.7314 0.0877

LSTM 4.6247 0.0892

Bi-LSTM 4.5337 0.0882

GRU 4.6030 0.0888

Bi-GRU 4.5030 0.0876

Table 2: Root Mean Square Error (RMSE) for estimating note density and

loudness based on video features, for different regression models.

4.2.2. Chord arpeggiation based on note density

To make the resulting music rhythmically interesting, we perform arpeggia-

tion to the generated chords. Arpeggiation spreads out the notes of a chord over

time, in patterns that may repeat, often in a progressively upwards or downward

order (Kamien & Kamien, 1988). We have selected five popular chord arpeggia-

tion patterns as shown in Table 3 and select the best fitting one based on the

note density estimation. Higher note densities will be assigned faster patterns

like 5th Pattern in Table 3 and vica versa. For example, if the note density is
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predicted to be high, we might play the chords with a lot of fast notes to make

the music energetic (e.g. 5th Pattern in Table 3). On the other hand, if the

note density is predicted to be low, we might play the chords with slower and

more spaced-out notes to create a softer and relaxed feeling (e.g. first Pattern

in Table 3). This step adds a rhythmic touch to the music, aligning it with the

video’s pacing and mood.

Note density level Arpeggiation patterns

1 (very low, ≤ 5 notes) 1 * * * 2 * * * 3 * * * 4 * * *

2 (low, 6-10 notes) 1 * 2 * 3 * * * 4 * 2 * 3 * * *

3 (moderate, 11-15 notes) 1 * 2 * 3 * 4 * 3 * 2 * 3 * 4 *

4 (high, 16-20 notes) 1 2 3 2 4 * 3 * 2 1 2 3 4 * 3 *

5 (very high, ≥ 21 notes) 1 2 3 2 4 3 2 3 2 1 2 3 4 3 2 3

Table 3: Arpeggiation patterns for different note density levels. For instance, for

a C major chord which consist of the notes C4 (C note in the fourth octave), E4,

G4, and C5, the ‘1’, ‘2’, ‘3’, and ‘4’ in the arpeggiation pattern refers to the note

C4, E4, G4, and C5, and the symbol ‘*’ represents a silent note, contributing to

the rhythmic structure. The timestep of arpeggiation patterns for each chord

ranges from 1/8 sec to 8/8 sec. In the scenario where the previous chord is

the same as the current one (e.g., . . . , C, C), the next arpeggiation pattern is

applied to the timesteps 9/8 sec to 16/8 sec.

4.2.3. Velocity estimation based on loudness

We recognize that the music’s volume should synchronize with the emotional

intensity and visual dynamics of the video. To achieve this synchronization, we

convert the predicted loudness based on the video features (with the model

described above), into a parameter known as MIDI velocity, which governs the

perceived loudness of the notes in the music. The conversion is achieved through

a linear mapping procedure, where the predicted loudness values, ranging from

0 to 1, are translated into corresponding MIDI velocity values within the defined
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MIDI velocity range of 49 to 112.

By establishing a connection between loudness levels and visual features, we

hope to forge a cohesive link between the auditory and visual elements. As the

video becomes more intense, the music can respond by growing louder, and as

the video becomes more tranquil, the music may adopt a softer demeanor.

4.3. Web User Interface

To make our music generation accessible and user-friendly, we have incorpo-

rated our models into an intuitive web interface using the Django web frame-

work (Django Software Foundation, 2019) as shown in Figure 10. This interface

empowers users with the following capabilities:

1. Video Selection: Users can effortlessly select their desired video by ei-

ther uploading it directly or providing a YouTube link.

2. Key and Chord Progression Specification: Users can specify the key

and optional seed chord progression (e.g., C Am F G) as a primer.

Once the video is chosen and uploaded, our model processes the video and

generates a matching audio file. To achieve this, the MIDI file is rendered

through a FluidR3 General MIDI soundfont. Finally, the original video stream

is synced with the newly generated audio using MoviePy (Burrows et al., 2021)

. The resulting music video .mp4 file is offered as a download. In addition, a

live demo of the model is available on Huggingface Spaces2.

5. Experimental setup

In this section, we present the experimental setup used to evaluate the per-

formance of our proposed Video2Music framework, including the Affective Mul-

timodal Transformer model. We should note that, given the novelty of this task,

there are no generative music systems that include video matching that we can

2https://huggingface.co/spaces/amaai-lab/video2music
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Figure 10: Interactive web user interface. Left: Input page where users can

specify the video, as well as the primer chord, and key. Right: Output page

displaying the new video with generated music.

benchmark our model to, only other music generation models. Hence, we per-

form extensive quantitative and qualitative evaluations to set a new benchmark

in the field. In our experimental setup, we divided our dataset into three distinct

subsets, namely the training set, validation set, and test set, with a distribution

ratio of 8:1:1, respectively. In the rest of this section, we describe our baseline

models, followed by implementation details and evaluation metrics.

5.1. Baseline models

We implement three models as baseline architectures: 1) Transformer (Vaswani

et al., 2017), 2) Music transformer (Huang et al., 2018), and 3) AMT without af-

fective matching loss. We use the same chord tokenization method for all of the

models, so that they could be trained on the chord dataset. The Transformer

and Music Transformer models are trained solely on chords without considering

video content. We should note that the first two models do not aim to match

video, but purely generate music. The third baseline model, AMT, is trained
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on both chords and video features but excludes the affective matching loss.

For the listening test, we use Music Transformer as a baseline to compare

our AMT model too. Hence, even for the Music Transformer, we do need to

transform the generated chords into playable MIDI files in a (reduced) post-

processing stage: we omit the use of the regression model for estimating note

density and loudness. Only the third arpeggiation pattern in Table 3 is applied

to the generated chord sequences.

5.2. Implementation

In our experiment, we use CLIP (Contrastive Language-Image Pretraining),

a powerful pretrained model, as a feature extractor. We freeze the weights of

the bottleneck layers of the CLIP feature extractor pretrained on the ImageNet

dataset (Deng et al., 2009).

Before the training step, we preprocessed the input music videos and resized

the video frames to 224 × 224 pixels to match the requirements of CLIP. When

it comes to input video and music features, extracted on a per-second basis, we

decided to set a time limit of 300 seconds. Hence, if the length of features in

the time axis stretches beyond 300s, we perform clipping to fit within this limit.

Conversely, if the length of features in the time axis are shorter than 300, we

pad them to meet the required length.

We use Adaptive Moment Estimation (Adam) as our optimizer when training

the Transformer model, with the initial learning rate set to 1.0. We use Lamb-

daLR Scheduler to decay the learning rate. The betas are set to (0.9, 0.98).

The value of λ has been set to 0.4 after careful evaluation on the validation

set. Finally, we used the PyTorch as a deep learning framework to implement

Transformer model and regression model. All experiments were performed on a

workstation with NVIDIA Tesla V100 DGXS 32 GB GPUs.
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5.3. Performance Measures

5.3.1. Metrics for Objective Evaluation

To measure the inference accuracy, we adopt Hits@k. This metric allows

us to evaluate the generated chord progressions by calculating the ratio of the

reference chord presence among the top k candidate chords predicted by the

model, where k = 1, 3, and 5. In our case, the reference chord is the ground

truth chord from chord progression estimated by chord transcription model on

our original audio data. Hits@k is a widely used metric for evaluating rank-

based methods (Yin et al., 2017, 2018; Wang et al., 2018) and is also employed

in music generation to assess the quality of generated results (Zeng et al., 2021).

Hits@k is calculated as follows:

Hits@k =
1

n

∑n

i=1
1(ranki ≤ k) (9)

where n represents the number of samples, 1(·) denotes an indicator function

that returns 1 if the rank of the target is less than k, and 0 otherwise.

We included the affective matching loss, as formulated in Equation 7, as

a metric to gauge the alignment between the music and video. This metric

assesses how effectively the emotions elicited by the generated chords match the

emotions expressed in the video.

5.3.2. Metrics for Subjective Evaluation

We conducted a comprehensive Listening test in which participants were

asked to rate 20 music videos in which the music was generated by our system.

They were asked to rate a number of questions on a 7-point Likert scale (1

being extremely poor and 7 representing excellent). These questions are aimed

to offer insights into the musical quality as well as the music-video alignment:

• Overall Music Quality (OMQ): How high is the overall quality of the

generated music (independently of the video content)?

• Music-Video Correspondence (MVC): How well are the video and music

matched overall?
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• Harmonic Matching (HM): How well does the harmony match the video?

• Rhythmic Matching (RM): How well does the tempo match the video?

• Loudness Matching (LM): How well does loudness match the video?

6. Results

We performed both objective and subjective experiments, using the test

set of our newly proposed dataset, MuVi-Sync for the task of music (chord)

generation for videos.

6.1. Objective evaluation

For the objective evaluation, our aim was twofold: firstly, to showcase the

ability of our model to match the emotion of the video, and secondly, to show

that the generated music is of high quality. To achieve this, we comparing our

approach to three different baseline models: Transformer (Vaswani et al., 2017),

Music Transformer (Huang et al., 2018), and our proposed model without the

affective matching loss.

Table 4 shows the Hits@k scores and affective matching loss of our proposed

Affective Multimodal Transformer (AMT) with and without affective matching

loss, as well as the results for two baseline models: Transformer (Vaswani et al.,

2017) and Music Transformer (Huang et al., 2018). Our proposed model, both

with and without affective matching loss shows excellent performance in terms

of Hits@k, indicating that the generated chords of of good quality. Both AMT

models outperform the baseline models. When the affective matching loss is

added, the emotion predicted from the generated chords matches the emotion

predicted by the video much more than any of the other models.

To tune the hyperparameters of our proposed Affective Multimodal Trans-

former (AMT) model, we conducted an experiment. Table 5, summarizes this

experiment, whereby we systematically vary the transformer parameters, in-

cluding heads and layers. Through this experimental analysis, we identified

the best-performing hyperparameters on the validation set, represented in the
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first row of the table. The impact of increasing or decreasing the number of

transformer heads and layers can be seen in the table. Each run’s performance

is measured using relevant metrics such as Hits@1, Hits@3, and Hits@5. By

systematically altering these parameters, we successfully discerned the optimal

configuration for our AMT model.

Model Hits@1 Hits@3 Hits@5 Affective Matching Loss

Transformer (Vaswani et al., 2017) 0.4789 0.7117 0.8204 1.8366

Music Transformer (Huang et al., 2018) 0.4965 0.7303 0.8323 1.8795

AMT w/o affective matching loss 0.5142 0.7585 0.8660 1.6859

AMT 0.5139 0.7722 0.8672 0.4662

Table 4: The Hits@k scores and affective matching loss of the proposed method

(AMT) and baseline models on the test set.

Configuration Transformer Heads Transformer Layers λ (Total Loss Weighting) Hits@1 Hits@3 Hits@5

Best 8 6 0.4 0.4855 0.7226 0.8381

1 2 6 0.4 0.4819 0.6973 0.8206

2 4 6 0.4 0.4796 0.7174 0.8269

3 8 2 0.4 0.4307 0.6905 0.8246

4 8 4 0.4 0.4603 0.7118 0.8284

5 8 8 0.4 0.4362 0.6401 0.7492

6 8 6 0.2 0.4261 0.6879 0.8143

7 8 6 0.6 0.4398 0.6954 0.8231

8 8 6 0.8 0.4485 0.7091 0.8193

Table 5: Hyperparameter tuning experiment, reported on the validation set.

The last three columns show the results for the listed parameters.

We also examine confusion matrices for our model. In Figure 11 and 12, the

confusion matrices for the chord and chord root, respectively, are shown. In the

former, we see a strong diagonal (correct classifications), and only a handful
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Figure 11: Confusion matrix (chord) of our proposed model.

of mistakes. Diving deeper into the misclassifications, we see that these are

musically similar chords. For instance C major and A minor both belong to

the same key, and differ only in one note. The most commonly misclassified

pair is G major and A minor (with 480 occurrences), this is an interesting case,

all notes in the A minor chord are exactly 1 whole tone above those of the

G major chord. In the key of C major, these chords are considered V and vi

respectively, and often can be found in the same chord sequences, such as the

popular I-V-vi-IV progression.

Looking at the confusion matrix for the chord root (Figure 12), we again

see a strong diagonal of correct classifications. The most misclassifications oc-

cur between between perfect fifths, perfect fourths, and major/minor thirds.

This again hints at the fact that our model understands music theory, as these

notes often occur together in chord progressions, of which the order may be

interchanged.

The confusion matrix of our proposed model for the predicted chord type

compared to the chord type that maps to the video emotion, is shown in Fig-
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Figure 12: Confusion matrix (chord root) of our proposed model.

Figure 13: Confusion matrix of the generated chord type of our proposed model

matched with the chord type associated with video emotion.
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ure 13. The diagonal is very present again, but there are also some closely

mixed pairs, especially major versus minor. To understand this, we should ex-

plore music theory. Even in major keys (e.g. C major), it is uncommon to use

only major chords. Hence, chord progression like C, G, A min, F are extremely

prominent. Even though a minor chord is present in this progression, the overall

sequence does not need to sound sad. Looking at some of the other pairs that

are confused by the model, we see sus4 and the seventh chord type. We notice

that in our mapping method (Table 1), these were both assigned the emotion

‘exciting’. Similarly, min and min7 were both assigned the emotion ‘sad’, and

maj and maj7 are both assigned ‘relaxing’. Even though our model may pre-

dict these different from the chord type predicted based on the emotion of the

video. Both chord types still relay the same emotion. Looking at maj7 and

min chord types, the first one is assigned ‘relaxing’ and the second one ‘sad’.

While these are separate emotions, we note that in some context they could still

overlap. Overall the confusion matrices show that our model is able to match

the emotion of the chords with the video.

The above observations strongly suggests that our Affective Multimodal

Transformer (AMT) excels in producing music of better quality and better

matched to video content compared to existing Transformer models. We will

further verify the quality of the output produced by AMT in a listening exper-

iment.

6.2. Listening test

We performed a listening test, where a total of 21 participants provided rat-

ings using a 7-point Likert scale for various questions. These questions include

Overall Music Quality (OMQ), Music-Video Correspondence (MVC), Harmonic

Matching (HM), Rhythmic Matching (RM), and Loudness Matching (LM). To

generate the final rating scores, we calculated the mean ratings given by all

participants for each of these questions. The results of the subjective evaluation

(listening test) are presented in Table 6.

The results highlight a clear preference of music generated by Video2Music
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Model OMQ MVC HM RM LM

Music Transformer (Huang et al., 2018) 3.4905 2.7476 2.6333 2.8476 3.1286

Video2Music 4.2095 3.6667 3.4143 3.8714 3.8143

Table 6: Listening test (Music Transformer and our proposed Video2Music

framework). Ratings are based on a 7-point Likert scale for the following ques-

tions: Overall Music Quality (OMQ), Music-Video Correspondence (MVC),

Harmonic Matching (HM), Rhythmic Matching (RM), and Loudness Matching

(LM).

over the Music Transformer (Huang et al., 2018) across all categories. The

musical quality (OMQ) of the proposed Video2Music model was rated 4.2 on

average, whereas the Music Transformer model received an average score of 3.5.

This was confirmed by performing a Wilcoxon Signed-Rank test, which had a

p < 0.00001, this confirming that the rated musical quality of our proposed

model is higher. In addition, the other questions were designed to test whether

the music generated by Video2Music matched the video more. Indeed, it re-

ceived higher scores than the baseline model in terms of Overall Correspondence,

harmonic, rhythm, and loudness matching. This is confirmed by a significant

p-value for each of these questions. The results of the listening test thus strongly

support that the proposed Video2Music model can generate high quality music

that matches video.

Finally, Figure 14 shows a visual representation of our model’s loudness and

generated MIDI in pianoroll format, together with two selected video scenes (sky

and dancing) from different times in the video. Notably, for the scene depicting

the sky, there is a discernible pattern of low loudness and note density levels in

the generated music. In contrast, during the dancing scene, the figure illustrates

a distinctive increase in both loudness and note density. This demonstrates that

our model’s ability to dynamically adapt music to match specific video content.
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7. Conclusion

In conclusion, our work represents a significant stride in the field of multi-

modal generative systems, by introducing a novel Video2Music framework for

generating music that seamlessly matches accompanying videos. This is a novel

task, which will be further facilitated by our development of MuVi-Sync, a

unique multimodal dataset annotated with symbolic music (transcription and

chords) as well as a large array of video features, including semantic, scene

offset, motion, and emotion.

Our framework includes an Affective Multimodal Transformer (AMT) model,

which fuses information from both the video modality, as well as the past gen-

erated chords, to generate the next chord in the sequence. This model includes

Figure 14: Generated MIDI in pianoroll together with estimated loudness (dur-

ing post-processing) for two selected video scenes (sky and dancing) from dif-

ferent times in the video.
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a unique affective matching loss, and a post-processing module to adjust the

music dynamically to match the video. The latter is achieved through the ap-

plication of biGRU-based regression for controlling note density and loudness,

based on video features, which ensures a dynamic and synchronized audio-visual

experience.

Through an extensive experiment, we show that our model not only success-

fully generates music that aligns with the emotional tone of the video but also

maintains high musical quality. These objective findings are further substan-

tiated by a comprehensive listening study, which confirms the effectiveness of

our approach in terms of musical quality and its ability to harmonize music and

video content.

While our extensive experiments showcase the success of our model in gener-

ating high quality music that is emotionally aligned with the video, it is crucial

to acknowledge the challenges encountered during our research. One aspect to

consider is the potential impact of the accuracy of transcription algorithms on

constructing the training dataset. We circumvented this issue as we opted to use

chord transcription. This performs reasonably accurate, however, it limits the

model to generating chords rather than polyphonic notes. This design chose was

made due to the fact that polyphonic music transcription is not accurate enough

and would introduce too many errors in the training dataset. This underscores

the importance of future approaches that directly generate audio, not midi, e.g.

such as the diffusion-based Mustango text-to-music model (Melechovsky et al.,

2023). In future work, we aim to omnit the transcription phase and directly

generate audio.

Another limitation lies in the framework’s performance in cases where video

content lacks clear emotional cues or exhibits complex thematic elements. The

delicate balance between maintaining musical quality and accurately reflecting

video emotions remains an ongoing challenge that warrants further exploration.

Additionally, we recognize a specific limitation related to the perceived repet-

itiveness in the generated music. This arises from our current methodology,

where we exclusively generate chords and arpeggiate them to produce music.
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To address this limitation and enhance overall musical diversity, a promising av-

enue for future exploration involves incorporating melody generation based on

the generated chord sequences, or include more complex arpeggiation patterns

and postprocessing.

It is important to consider that music often dominates the emotion perceived

when watching videos, as discussed by Chua et al. (2022). Purely from video

cues, the model may encounter challenges in precisely determining the intended

emotion, given the multifaceted nature of visual scenes. For example, a quiet,

light scene may evoke both cheerful or tense emotions, depending on the context.

In such instances, additional information such as scripts or lyrics could provide

valuable context for a more nuanced interpretation, or we may allow the user

to enter the desired emotion as input. These considerations open up exciting

avenues for future research, emphasizing the need for a holistic and multimodal

approach to enhance the model’s understanding of complex emotional dynamics

in music videos.

This work, which introduces an innovative, multimodal dimension to the

field of music generation, holds great promise for various applications, including

enhancing multimedia experiences, video games, as well as film and advertising

videos. The MuVi-Sync dataset and the AMT model are released as open source

and are available online3. With this work, we aim to open the door to new

possibilities in the realm of music generation for videos, by offering a workable

dataset, with successful baseline models.

Looking ahead, there are several exciting directions for future exploration

in this field. One potential avenue for further development is the generation of

melodies based on the generated chord sequences. Incorporating melody genera-

tion to the arpeggiated chords, such as in (Zixun et al., 2021), or drums (Makris

et al., 2022) would add another layer of musical richness and coherence to the

generated compositions, enhancing the overall aesthetic quality and emotional

impact of the music-video combination. Secondly, exploring the utilization of

3https://github.com/AMAAI-Lab/Video2Music
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music in the waveform presents an intriguing area for future research. By further

analyzing the audio waveform itself, we can extract and leverage additional mu-

sical attributes, such as timbre, to further enhance the generated music’s fidelity

and expressiveness. This extension would contribute to a more comprehensive

and nuanced music generation process. Additionally, there is scope for designing

and implementing a novel chord embedding method. Embedding chords into

a meaningful and structured representation would facilitate the model’s under-

standing of chord progressions and harmonic relationships. By capturing the

inherent musical knowledge encoded within chord sequences, our system could

generate more sophisticated and musically coherent compositions.

In summary, our Video2Music generation framework represents a significant

advancement in the field, providing a powerful tool for content creators seeking

to enhance their videos with personalized and seamlessly integrated background

music. The future prospects of this research are promising, with opportunities

to delve deeper into multi-track generation, waveform analysis, as well as in-

novative chord embedding techniques. By pushing the boundaries of AI-driven

music generation for videos, we can continue to revolutionize the way back-

ground music is created and further enrich the audiovisual experience for both

content creators and audiences.
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