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Highlights
PreBit - A multimodal model with Twitter FinBERT embeddings for extreme price movement
prediction of Bitcoin
Yanzhao Zou,Dorien Herremans

• A multimodal model for BTC extreme price movement prediction using Twitter.
• Ablation study of the impact of different modalities on accuracy.
• New publicly available dataset of 9,435,437 tweets related to Bitcoin.
• A profitable trading strategy with reduced risk exposure for Bitcoin trading.
• Demonstrates the influence of predictive thresholds on risk of a trading strategy.
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A B S T R A C T
Bitcoin, with its ever-growing popularity, has demonstrated extreme price volatility since its
origin. Extreme price fluctuations have been know to occur due to Tweets from Elon Musk,
Michael Saylor, and others. In this paper, we aim to investigate whether we can leverage Twitter
data to predict these extreme price movements. Existing social media models often take a
shortcut and include sentiment extracted from Tweets. In this work, however, we want to embed
the actual Tweets in a domain-informed way, and investigate whether they have an impact. Hence,
we propose a multimodal deep learning model for predicting extreme price fluctuations that takes
as input candlestick data, prices of a variety of correlated assets, technical indicators, as well as
Twitter content. To train the model, a new dataset of 5,000 tweets per day containing the keyword
‘Bitcoin’ was collected from 2015 to 2021. This dataset, called PreBit, is made available online1,
as is our model2. Our proposed hybrid multimodal model consists of an SVM model based on
price data, which is fused with a text-based Convolutional Neural Network. In the text-based
model, we use the sentence-level FinBERT embeddings, pretrained on financial lexicons, so as
to capture the full contents of the tweets and feed it to the model in an understandable way.
In an ablation study, we explore whether adding social media data from the general public on
Bitcoin improves the model’s ability to predict extreme price movements. Finally, we propose
and backtest a trading strategy based on the predictions of our models with varying prediction
threshold and show that it can be used to build a profitable trading strategy with a reduced risk
over a ‘hold’ or moving average strategy.

1. Introduction
With cryptocurrencies gaining traction among both retail and institutional users over the past few years, the market

cap of the cryptocurrencies grew significantly. Bitcoin (BTC) is the most traded and largest cryptocurrency by market
capitalisation. While trading activities of traditional assets are dominated by institutional investors, retail investors play
a much bigger role in Bitcoin trading (see Goldman Sachs report by Nathan et al. (2021)). Bitcoin is also a digital asset
that does not derive its value from physical demands such as coal and iron ore. This makes the Bitcoin price more
susceptible to be influenced by the market sentiment. For example, the price of Bitcoin rose by as much as 5.2 percent
on 24 March 2021 when Elon Musk tweeted Tesla would accept Bitcoin for payments. It also crashed as much as 9.5
percent on 13 May 2021 when Elon Musk tweeted to question the energy consumption from Bitcoin mining. In this
paper we propose a multimodal model that can predict extreme Bitcoin price movements based on Twitter data as well
as an extensive set of price data with technical indicators and related asset prices. There exists some research that uses
sentiment information from social media to try to predict cryptocurrency prices (Mohanty et al., 2018). By just using
sentiment information, however, a lot of potentially useful information is ignored. In this research, we therefore leverage
a state-of-the-art method to embed the entire tweet contents into a BERT model (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) and use it as input to our predictive model. We further enhance our model using
historical candlestick (OHLCV) data and technical indicators, together with correlated asset prices such as Ethereum
and Gold. A schematic overview of our work is shown in Figure 1.

1https://www.kaggle.com/datasets/zyz5557585/prebit-multimodal-dataset-for-bitcoin-price
2https://github.com/AMAAI-Lab/PreBit
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Figure 1: Schematic overview of the paper.

When exploring existing studies that use social media data, we notice that most of the exiting research uses
sentiments from texts, article titles, or social media posts, or meta-features such as number of posts, and number
of comments as the model input, rather then actual word embeddings. Sentiments are often extracted using pretrained
models such as Valence Aware Dictionary for Sentiment Reasoning (VADER) (Elbagir and Yang, 2019), word2vec
(Acosta et al., 2017), or BERT (Sun et al., 2019a). Firstly, sentiment models pretrained for general purpose may not
apply to financial language, for example, they may not accurately model or embed the words ‘chart’, ‘hold’, ‘bull’ or
‘bear’. The distadvantage is that the context of the text is also lost when only the derived statistics are used. Utilising
the full text of posts in the model retains more information and improve model performance. Hence, in this paper, we
use the full text embeddings in our predictive model, in combination with a dedicated financial sentence embedding
model, FinBERT (Araci, 2019). An additional challenge when doing this is that the number of words in the tweets
gathered every day varies and a neural network typically requires a constant input length. We propose a solution to
this problem by concatenating the tweets and splitting them into larger blocks as explained in detail in Section 4. To
the best of our knowledge, only one study (Lamon et al., 2017) has tried to use text embeddings, not just sentiment,
to predict Bitcoin prices, and this does not use an embedding model pretrained on financial texts, nor do they predict
extreme movements or offer a backtested trading strategy with reduced market exposure risk. This research aims to fill
this gap.

In this paper, we propose a multimodal embedded model for predicting extreme price movements of Bitcoin and
evaluate the impact of different modalities, including tweets represented through finBERT context embeddings. A new
dataset is released consisting of tweets as well as candlestick data, related asset prices (Ethereum and Gold) and a
selection of technical indicators from 1 January 2015 until 31 May 2021. In an ablation study, we explore the influence
of different multimodal data. The model and dataset is made available online1. In this research, we treat price prediction
as a classification problem, whereby we predict next-day extreme price movements (up/down 2 or 5%), this way, our
predictions can be directly embedded in a trading strategy. The proposed (simple) trading strategy was backtested with
different predictive thresholds to optimally control risk exposure.

The next section provides a review of related literature. In Section 3, we describe the PreBit dataset in more detail.
The proposed models are explained in the next section, followed by our experimental setup in Section 5. Finally, in
Section 6, the results from the experiments are discussed followed by a conclusion.

1https://github.com/AMAAI-Lab/PreBit
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2. Literature Review
In this section, we will review some of the relevant research on price prediction models and identify how the current

research addresses a unique gap. First, we will walk through existing research that uses traditional price information
and technical indicators for predicting Bitcoin’s price. Then we provide a brief overview of models that use Natural
Language Processing (NLP) in traditional stock price prediction models. Lastly, we explore how NLP has been used
for cryptocurrency price prediction.
2.1. BTC price prediction with technical indicators

To predict price movements of any asset, a common approach is to look at historical Open-High-Low-Close-Volume
(OHLCV) data together with technical analysis (TA) indicators. The same applies to Bitcoin trading.

Basic machine learning models have been used to construct models that use TA data. For instance, Ślepaczuk et al.
(2018) used six technical features such as Momentum and Relative Strength Index with a Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) model to predict whether several cryptocurrency belonged to the top or bottom
quintile in terms of volatility-adjusted returns. However, their model was not able to outperform simple Buy-and-Hold
or Equal-Weight strategies. Sun et al. (2019b) used OHLCV data to predict price change direction for Bitcoin and
Ethereum with a 5-minute frequency, using 16 technical indicators and a Random Forest. The backtesting results for
their strategy demonstrate the capability to capture trend change to a certain extent, but struggles with reversal periods.

With the success of neural networks over the past few years, recent research has also explored the use of deep
learning techniques for price prediction. Recurrent neural networks architectures, including Long-Short-Term-Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), are a widely adopted model in time-series prediction for their capability
to capture temporal information (Mikolov et al., 2010). For predicting digital asset prices, Kwon et al. (2019) used
the OHLC and volume data of a basket of cryptocurrencies at a 10-min interval to construct a training dataset and
predict price movement direction as a classification problem. The model outperforms a baseline gradient boosting
model. Long-Short-Term Memory-Models (LSTMs) are a popular architecture for cryptocurrency price prediction
with TAs. (Aditya Pai et al., 2022), (Wu et al., 2018) (Shin et al., 2021), (Felizardo et al., 2019). Alonso-Monsalve et al.
(2020) combined LSTMs with Convolutional Neutral Networks (CNNs) using OHLC data and 18 derived technical
indicators. This architecture outperformed the LSTM and Multi-layer Perceptron (MLP) models for Bitcoin, Litecoin
and Ethereum price prediction on a 1-min interval from July 2018 to June 2019.

New deep learning techniques that capture the temporal relations between data include WaveNet (Temporal CNNs
with residual connections) (Oord et al., 2016) and Transformer networks (Vaswani et al., 2017) have recently also been
used for digital asset prediction. Felizardo et al. (2019) did a comparison study between WaveNet, Autoregressive
Integrated Moving Average (ARIMA), Random Forest, SVM, and LSTM to predict the future price of Bitcoin using
OHLCV data. They found that the ARIMA model and the SVM equally outperformed the other models including
WaveNet. One potential reason for this is that deeper models like Wavenet traditionally need a bigger dataset compared
to models such as SVMs and ARIMA. Transformers, however, have demonstrated superior performance in the study
conduced by Afteniy et al. (2021). Using only Bitcoin OHLC data on a 1-min interval for 2007 to 2021 as input,
the authors reported 83% accuracy for a Transformer model versus the 67% accuracy for an LSTM architecture
when performing directional price change prediction. Sridhar and Sanagavarapu (2021) also used the Transformer
architecture with Time2vec on Dogecoin price data and reported a better result in terms of Mean Absolute Error
(MAE) compared to an LSTM model (Shin et al., 2021), Recurrent Neural Network (RNN) model (Kavitha et al.,
2020), and a Linear neural network (Ali and Shatabda, 2020).

Despite the advances in time-series prediction, investors typically make use of more information other than just the
candlestick data when deciding to buy an asset. Hence, in the next subsection, we will discuss how NLP techniques
have been used for predicting asset prices.
2.2. Stock price prediction with NLP

Looking at the stock market, there is a longstanding believe that sentiment and social influence has an impact on
prices. For instance, the efficient market hypothesis states that assets are always trading at their fair value, thus leaving
outperforming the market impossible (Malkiel, 1989). Provided an NLP model could capture all the knowledge of the
world, we could in theory be able to predict the correct price. There are, however, limitations to this hypothesis: 1)
markets may not really be efficient (Wang, 1985); 2) we cannot include all the information of the world in our model.

The recent success of the Transformer-based BERT model (Devlin et al., 2018) for multiple NLP tasks has attracted
the attention of financial researchers as well. Combining the sentiment information extracted from BERT on carefully
Zou and Herremans: Preprint accepted in Expert Systems with Applications Volume 233 Page 3 of 29
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annotated Twitter data with stock OHLC price data, Dong et al. (2020) reported better results in terms of Area Under the
Curve (AUC) for next-day price prediction compared to the state-of-the-art stock prediction model StockNet developed
by (Xu and Cohen, 2018). Other similar work using BERT equally reported that their models outperformed others to
various degrees (Sonkiya et al., 2021; Chen, 2021). Based on these results, we have opted to use the state-of-the-art
BERT model for this research, pretrained on a financial lexicon.

In general, we see many sources of text data used in stock prediction research, for instance, StockTwits (Jaggi et al.,
2021), Yahoo! Finance news (Schumaker and Chen, 2009), Reuters and Bloomberg news (Ding et al., 2015), Twitter
data (Bollen et al., 2011; Si et al., 2013; Das et al., 2018; Oliveira et al., 2017; Groß-Klußmann et al., 2019; Teti et al.,
2019; Valle-Cruz et al., 2021; Pagolu et al., 2016), Dow Jones Newswire (Moniz and de Jong, 2014), and Bloomberg
reports (Chan and Franklin, 2011). Given its popularity in financial circuits, we have opted to use Twitter data in this
study. For a more complete overview of text-based methods for stock prediction, the reader is referred to the survey
papers by De Fortuny et al. (2014); Kumar and Ravi (2016); Thakkar and Chaudhari (2021). The next subsection
focuses on how some of these techniques have been used for digital assets.
2.3. BTC price prediction with multimodal models

Just like stock prices are influenced by any available multimodal datastreams, so are digital asset prices. In addition
to the traditional price-based data, we see the emergence of multimodal models for digital assets price prediction, that
combine this data with different types of data. Examples of such data include on-chain data as well as exchange data
(Herremans and Low, 2022), sentiment and social media data such as Twitter data (Mohapatra et al., 2019; Wołk, 2020;
Raju and Tarif, 2020; Kim et al., 2021), Telegram (Smuts, 2019; Patel et al., 2020), Reddit(Ortu et al., 2022; Raju and
Tarif, 2020), and more. Looking at existing literature, there are a number of models that again use the sentiment score
derived from a text source as input to a predictive price model. We briefly go over related literature, but for a more
comprehensive literature review on cryptocurrency trading research, the reader is referred to Fang et al. (2020).

Kim et al. (2016) used VADER (Valence Aware Dictionary for Sentiment Reasoning (Hutto and Gilbert, 2014)) to
generate a sentiment score from comments and replies on the Bitcoin, Ethereum and Ripple community posts. Akbiyik
et al. (2021) also used VADER to to extract twitter sentiment as part of the model inputs in an early fusion set-up
for next-fifteen-minute Bitcoin realised volatility prediction. In a more recent study, Aharon et al. (2022) examined
the relationship between Twitter-based uncertainty and cryptocurrency returns. They used Twitter-Based Economic
Uncertainty (TEU) and Twitter-Based Market Uncertainty (TMU), two indices generated by the Economic Policy
Uncertainty website from 2011 to 2020 (Baker et al., 2021), together with OHLCV data from CoinDesk. The authors
documented a significant directional predictability from the TMU and TEU for Bitcoin based on a cross-quantilogram
analysis. Nghiem et al. (2021) used historical posts from Telegram channels collected using PumpOlymp2 which
included keywords such as “pump”, “dump”and “signals” as part of their social media data. The authors built a
combined CNN and LSTM model to predict ‘pumps’ with a prediction error typically less than 5% away from the
true price. They used statistics of social media data such as number of posts on Twitter, Facebook, Github repositories,
number of comments, views and open issues.

Mohanty et al. (2018) used sentiments from tweets with technical indicators in an LSTM that marginally
outperforms a random model in predicting the next-ten-minute Bitcoin price change direction. Passalis et al. (2021)
used FinBERT (Araci, 2019) to extract sentiments from a dataset with 223,000 news headlines collected by BDC
consulting3. They report a high return for their CNN model price change detection model based on sentiments,
which only slightly outperformed the one using OHLCV data. Similarly, Cruz and Silva (2021)’s autoencoder model
with sentiment information (from BERT trained on 10,111 news articles) outperforms the model without sentiment
information by 3.7 ppt in terms of 𝑅2. A similar conclusion was made by Ortu et al. (2022) for there model that uses
sentiment from 4,423 Github and 33,000 Reddit user comments.

Using only the sentiment of the available text is popular (Ye et al., 2022; Akbiyik et al., 2023; Haritha and Sahana,
2023; Leung et al., 2023; Critien et al., 2022; Sabri et al., 2022), but is very limiting. By using the actual text (content)
instead of only the sentiment, much more data could be used to make more accurate predictions. However, we were
only able to find one study that directly uses the actual text and feeds it to a predictive model without first extracting
the sentiment. Lamon et al. (2017) used a bag-of-words (BoW) to extract embeddings from news headlines from
cryptocoin.com as well as 60 tweets daily on the topic of cryptocurrency. Experimenting with logistic regression,

2https://pumpolymp.com/
3https://bdc.consulting/insights/cryptocurrency/analyzing-crypto-headlines
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SVM, and Naive Bayes, the authors reported that logistic regression performed the best and was able to consistently
achieve higher than 50% accuracy in predicting next-day Bitcoin price change direction.

In the last few years, cutting edge NLP research includes much more effective techniques for embedding text into
NLP models, other than bag-of-words. Hence, we turn to some of the latest state-of-the-art in this paper and explore
FinBERT embeddings for Twitter. In addition, many of the previous studies do not make their dataset available, so
there can be no direct comparison or benchmarking. In this study, our source code and dataset is made available online
to allow other researchers to further improve upon our work.

In the current study, we aim to fully use social media content, beyond just using sentiment scores. We therefore
leverage upon the results by Lamon et al. (2017) and improve their approach by using a pretrained BERT on finance
data: finBERT, which should be better able to capture financial content (Araci, 2019). Contrary to many other research
studies, we also propose a trading strategy based on the models and thoroughly backtest it to illustrate how such models
may be used to decrease the downward risk of trading strategies.

3. Multimodal Dataset
We present a new dataset, PreBit, which consists of two modalities: daily price, correlated assets with technical

analysis data for BTC (which we will refer to as TA data for simplicity), as well as a the contents of a 5,000 of daily
tweets. The dataset is available online4. In the next two subsections we will discuss these two modalities in more detail.
3.1. Twitter Data
Collecting tweets The PreBit dataset consists of publicly available tweets containing the keyword ‘Bitcoin’ from 1
January 2015 until 31 May 2021. A total of 5,000 tweets (or the maximum available that day) were collected per day
using the GetOldTweets-python library 5, starting at 23:59:59 GMT+0 and tracking backwards. This resulted in a total
of 9,435,437 tweets over the entire period. In 2015 there are a few days with less than 5,000 tweets, which is due to
the fact that Bitcoin was not yet as popular in these earlier years.

Each tweet contains the following attributes: username, timestamp in datetime format (minutes), number of retweets
and favourites, tweet content, mentions (user names), hashtags, unique ID, and permalink. To protect user privacy, all
information related to user identity was discarded. Although many of these attributes may be useful for future models,
the current study focuses only on the tweet content.
Preprocessing To efficiently input tweet content into machine learning models in a way that is understandable, we
first need to do preprocessing to clean the data and make it less noisy. This preprocessing step is a common practice
in NLP models to ensure that the remaining word tokens are meaningful. Each tweet has gone through the following
process in sequence:

1. Converted all English alphabet characters to lower case.
2. Removed all the URLs.
3. Removed the symbols ‘@’ and ‘#’.
4. Removed all the characters that are not in the English alphabet, to filter out numbers and non-English tweets

using the library spaCy.
5. Removed sentences with only 1 word token left.
Figure 2 illustrates the 20 words with the highest occurrence frequency from the entire Twitter dataset. There are

a total 36,639 unique words. Stopwords, ‘bitcoin’, ‘btc’ and ‘cryptocurrency’ have been excluded from the counting
process, as unsurprisingly, they are the most frequent words given our search criteria when constructing the dataset.
We notice two other cryptocurrencies were often mentioned together, ‘eth’ (Ethereum) and ‘xrp’( Ripple). Hence, we
proceeded to include Ethereum price as part of the technical indicators for TA dataset. Action words such as ‘buy’ and
‘get’ also occurred with a high frequency.
3.2. TA Data

For simplicity, we refer to the price related input data as TA data. It consists of three elements: candlestick data
(Open-High-Low-Close-Volume, or OHLCV), related asset prices, and a few selected technical indicators. We will
discuss each of these in more details below.

4https://www.kaggle.com/datasets/zyz5557585/prebit-multimodal-dataset-for-bitcoin-price
5https://github.com/Jefferson-Henrique/GetOldTweets-python
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Figure 2: Top 20 most frequent words in the tweets in our dataset.

Candlestick data We included the daily Bitcoin OHLCV data from CryptoCompare6. As Bitcoin is traded on
multiple exchanges, data from one exchange may not capture the full picture. Cryptocompare aggregates the trading
volume and prices from different exchanges to provide a more comprehensive overview of market activities (also used
by Alonso-Monsalve et al. (2020)). The data covers the period from 1 January 2015 until 31 May 2021, which is the
same range as the collected Twitter data.
Technical Indicators and correlated assets In addition to the basic OHLCV data collected directly from
Cryptocompare, we have also calculated 13 standard technical indicators, including correlated asset prices. Figure 3
visualizes these indicators together with the Bitcoin close price. For better visibility, only the last year of our data is
displayed.

• Moving Averages (5) - Moving average is a commonly used feature in technical analysis (Ellis and Parbery,
2005). We have included five different moving averages: the 7-day simple moving average, the 21-day simple
moving average, and three exponential moving averages. The first exponential moving average uses a decay rate
of 0.67. To support the calculation of Moving Average Convergence Divergence (MACD), we calculated 12-day
and 26-day exponential moving average and kept them as indicators.

• Moving Average Convergence Divergence (MACD) (1) - this indicator is built upon moving averages. It
compares the short-term moving average to the long-term moving average in order to identify the price movement
momentum. If the short-term moving average is greater than the long-term moving average, it suggests that
the recent price demonstrates an upward momentum. In our set-up, we have selected the 12-day and 26-day
exponential moving averages to calculate the MACD.

• 20-day Standard Deviation of BTC Closing price (1)- this is a basic measure of the BTC price volatility, and
used to calculate the Bollinger Bands.

• Bollinger Bands (2) - Bollinger Bands are volatility bands placed above and below the moving average of price.
We have set up the band to be ± two 20-day standard deviation of the price from the 21-day simple moving
average. The band captures information on price volatility.

• High-Low Spread (1) - This is the distance between the highest and lowest price of the day. The indicator attempts
to capture the price volatility of the day.

• ETH price (1) - the close price of Ethereum on the same day. Bitcoin and Ethereum currently the two
cryptocurrencies with the two largest market caps (excluding USDT). Their price has historically shown
correlation (Katsiampa, 2019; Beneki et al., 2019).

• Gold spot price (1) - Bitcoin is often referred to as a popular inflation hedge, or ‘digital gold’ (Kang et al., 2019),
hence we have included the Gold price.

6cryptocompare.com
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(a) BTC Close price with 7-D and 21-D MA.
(b) BTC Close price with Ethereum and Gold price on a log
scale.

(c) BTC Close price with Bollinger bands. (d) MACD with 12-D and 26-D EMA.
Figure 3: Visualisation of selected TA features.

• Moving Average Indicator (1) - This feature is a binary representation which indicates whether the 7-day simple
moving average price of the day is 5% higher than the current price.

Normalising Procedure The features that are directly related to the Bitcoin price were normalised as percentage
change of the closing price of the previous day as per Equation 1. These include OHLC, moving averages, and Bollinger
Bands. Other features including volume, ETH price and gold spot price were normalised as percentage change over
their own value of the previous day as per Equation 2; Lastly, for MACD, 20-day standard deviation and high-low
spread, we normalised as percentages of the closing price of the previous day, as per Equation 3.

feat_norm_btc𝑡 =
feat(𝑡) − price_BTC_close(𝑡−1)

price_BTC_close(𝑡−1) (1)

feat_norm_self𝑡 =
feat(𝑡) − feat(𝑡−1)

feat(𝑡−1) (2)

feat_norm_prev𝑡 =
feat(𝑡)

price_BTC_close(𝑡−1) (3)

The Pearson correlation between the above mentioned (normalized) technical indicators and the next day Bitcoin
price is shown in the Figure 4 and Table 1. We notice that there is generally a low direct correlation between the
features and the next day Bitcoin close price (normalized). The price of Ethereum has the highest correlation in terms
of absolute value to the next day Bitcoin price. Volatility related indicators such as the 20-day standard deviation and
lower Bollinger band show a stronger correlation as well. No one feature has an outspoken higher correlation with our
predictive feature, hence we include all of them in our model. The full correlation values are shown in Table 10 in
Appendix, and the corresponding p-values in Table 11 in Appendix. It is worth noting that, although the correlation
values are low, the p-values for most of the features are also rather low. This shows that despite the low correlation in
absolute terms, many features do still have statistically significant linear correlation to the next-day Bitcoin price. It is
also worth mentioning that the features are later used in SVM models which are not linear models.
Zou and Herremans: Preprint accepted in Expert Systems with Applications Volume 233 Page 7 of 29
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3.3. Data Labels
Our research aims to answer whether we can predict extreme price movements using a hybrid multimodal model.

Therefore, the prediction class labels should serve to flag out extreme price movements. We created binary class
labels based on whether the percentage change of the daily BTC close price is above a selected threshold 𝜃 for each
experimental cases. The digital asset market generally has much higher volatility over the traditional market, therefore,
we chose the work with the daily ‘high’ and ‘low’ values respectively for the up and down task. We explored four values
for the threshold 𝜃: ±2% and ± 5%. Being able to flag such large price movements may offer investors a warning sigh
protect their assets from downside price movements or profit from upcoming large price movements.

The ±5% thresholds will serve to alert investors of upcoming extreme price movements. Since these are extreme
events, the positive and negative class ratio distribution ratio is around 1:5. With the ±2% thresholds, the class
distribution ratio is around 2:3, which is a lot more balanced. Although a 2% move for Bitcoin might not be considered
large given the market volatility, the more balanced dataset distribution case could serve to provide additional
perspective to our experiments, which will be discussed later in Section 6. The distribution of the labels can be found
in Table 2.

Figure 4: Correlation matrix for the TA indicators.
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Table 1
Pearson Correlation coefficient of each feature (and p-value) with Bitcoin’s next day close price.

High Low Close Volume

-0.017(0.405) -0.058(0.005) -0.057(0.006) 0.013(0.497)

Adj Close ma7 ma21 ema

-0.056(0.06) -0.039(0.054) -0.032(0.098) -0.060(0.004)

26ema 12ema MACD 20sd

-0.034(0.084) -0.037(0.060) 0.023(0.217) 0.051(0.017)

upper band lower band spread ma indicator

0.008(0.784) -0.065(0.002) 0.033(0.120) -0.040(0.041)

eth gold

-0.092(0.000) -0.020(0.322)

Table 2
Class distribution for different predictive tasks 𝜃.

𝜃 +5 % +2% -5 % -2%

T F True Ratio T F True Ratio T F True Ratio T F True Ratio

Training Set 292 1680 14.84% 810 1162 41.08% 298 1674 15.11% 789 1183 40.01%
Test Set 60 305 16.44% 168 197 46.03% 60 305 16.44 % 175 190 47.95%

4. Multimodal Model for Price Extreme Movement Prediction
We propose a multimodal hybrid model that consists of two input modalities: Twitter content and TA data. A

predictive model was built for each of these modalities and a fusion model was then added to the architecture to come
to a joint prediction. The task of this model is to predict extreme price movement (up/down 2 or 5%) within the next one
day (i.e. looking at high/low prices, not just closing price). Figure 5 shows an overview of the proposed architecture.
We will discuss the three parts of our model in the next subsections.
4.1. CNN Model with Tweet Data

For the CNN models with tweet data, we first represented the daily tweets as a dense embedding, and then we
implemented two possible convolutional neural network (CNN) configurations which were evaluated in the results
section. In the following text we will refer to the CNN models with tweet data as ‘Twitter CNN’.

Figure 5: Proposed multimodal hybrid model.
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4.1.1. FinBERT context embeddings
After the tweets are preprocessed (see Subsection 3.1), we represent them with efficient dense embeddings.

There are various ways to obtain word embeddings, including Bag of Words (BoW), Term Frequency - Inverse
Document Frequency (TF-IDF), Word2vec, Global Vectors for Word Representation (GloVe) (Pennington et al., 2014).
Earlier embedding models such as BoW and TF-IDF in essence create a sparse matrix based on the (co-occurrence)
frequency of words. GloVe (Pennington et al., 2014), a later model, uses a non-parametric and unsupervised learning
algorithm that tries to capture the semantic similarities between words, and outputs them into a fixed-dimension feature
representation. Word2vec embeddings are also much more dense and trained unsupervised by a simple neural network
with one hidden layer (Mikolov et al., 2013).

We opted to use the context (sentence) embeddings from the state-of-the-art FinBERT model (Araci, 2019) which
is built upon Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) to obtain our
embeddings. When BERT was developed in 2018 it outperformed traditional embedding models on variety of language
tasks (Devlin et al., 2018). FinBERT is in essence a BERT model, finetuned on financial text datasets such as TRC2-
financial7, a dataset provided by Thomson Reuters, which consists of 1.8 million news articles published between 2008
and 2009. Because FinBERT is trained on financial texts, it is better suited for any financial related task such as the
one tackled in this research. The FinBERT model obtained a 10 to 20% increase in accuracy in Financial PhraseBank
dataset classification tasks over the baseline models, and outperformed other state-of-the-art models in terms of both
mean squared error (MSE) and 𝑅2 on the FiQA sentiment dataset. These recent development incentivized us to use
FinBERT in our model for embeddings.

The context embeddings for a given sentence generated by the FinBERT model are a 768-dimensional vector. As
our dataset consists of 5,000 daily tweets across 6 years and 5 months, there would be over 9.5 million entries to process
for the embeddings, resulting in a large amount (5,000) of embeddings per day. Considering the fact that tweets are very
short (maximum 280 characters), and and with computational efficiency in mind, we decided to concatenate multiple
tweets into one longer text. Specifically, one day worth of tweets is concatenate to form text slices of 200 word tokens,
with 50 overlapping tokens at the start of next text slice. Finally the embeddings are obtained for each of the text slices
and fed into the Twitter CNN model. Each embedding has a dimension of 1 × 768. Embeddings for tweets from the
same day are stacked into a 2-dimensional vector of size 𝑛 × 768. Since the maximum number of text slices per day
found in our dataset is 362, we used zero-padding on all the 2-dimensional input vectors to ensure a size of 362 × 768.
4.1.2. CNN Architectures

We opted to process the text with CNN architectures (LeCun et al., 1989), as these have shown to be very efficient
for two-dimensional data, as they have a greatly reduced number of parameters compared to traditional neural network
structures. We experimented with two different convolutional neural network (CNN) architectures for the language-
based model: a sequential CNN and a parallel CNN.
Parallel CNN Applying CNNs for sentence classification has seen quite some research interest (Zhang and Wallace,
2015; Zhang et al., 2016; Hsu et al., 2017; Shin et al., 2018). The popular work by Kim (2014) offered the basis for
our model. In his work, Kim used the 300-dimensional Word2Vec embedding for each token in a sentence, and fed
them into a 1-D CNN model. This work highlighted the importance of well-trained unsupervised pretraining of word
vectors, and also demonstrated that using a simple 1-layer convolution can produce high performance on a variety of
tasks.

In our work, we are focused on capturing the collective discussions and views on Bitcoin from the tweets on a
given day. The information behind a singular tweet can often be trivial and noisy. Therefore, our model input consists
of multiple embeddings which together capture a full day of tweet sentences as opposed to just a sentence of tokens in
Kim’s model. The intuition for this parallel CNN architecture is that the model should first capture the most relevant
information between sentences from the embedding, and then extract the most relevant pieces of information from
each of the 362 text slices (maximum number of daily text slices).

Our proposed parallel CNN model first applies 1-D convolution on the input (embedding) layer. This convolution
operation uses three sets of filters of size: 3×768, 4×768, and 5×768, but the filters move only in one direction.
Afterwards, we apply 1-D max pooling on the 3 sets of feature maps resulting from the convolution operations, with
the feature map length as the kernel size (resulting in one value per feature map), and concatenate the output. Then

7https://trec.nist.gov/data/reuters/reuters.html
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we pass the result through two fully connected layers followed by the classification layer. An overview is provided in
Figure 6.

Figure 6: Parallel Twitter CNN model. We use FC for fully connected dense layer. A ReLu activation is applied after each
convolutional layer. A dropout of 0.5 is applied on the first fully connected layer. The final prediction is made with softmax.

Sequential CNN A sequential CNN model (see Figure 7) was also implemented. This model essentially treats the
embeddings as images of size 362 × 768 and applies a 2-D convolution operation on this input. This architecture is
inspired by the LeNet-5 model (LeCun et al., 1998). The main difference is that we added one extra convolutional layer
and used a filter size of 5×5, 4×4, 3×3 respectively in each of the three convolution layers.
4.1.3. Implementation and hyperparameters
Loss function Two different loss functions were implemented for the Twitter CNN model: a conventional Cross
Entropy (CE) loss and a Focal Loss (Lin et al., 2017) developed by Facebook AI Research. The CE loss is a staple in
classification model training. Since our dataset is unbalanced (see Section 3, there is an incentive to use a loss function
that takes this into account, i.e. Focal Loss (FL).

Focal Loss was proposed by Lin et al. (2017) to train dense object detectors. Below we show the formulas for the
two loss functions for each output sample, in the case of a binary classification task (class 𝑡 = 1 or 𝑡 = 0), with 𝑝𝑡 being
the probability of a sample belonging to class 𝑡.

𝐶𝐸(𝑝𝑡) =

{

−𝑙𝑜𝑔(𝑝𝑡) if 𝑦 = 1
−𝑙𝑜𝑔(1 − 𝑝𝑡) otherwise (4)

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 𝑙𝑜𝑔(𝑝𝑡) with 𝑝𝑡 =

{

𝑝 if𝑡 = 1
1 − 𝑝 otherwise (5)

As we can see, Focal Loss differs from cross entropy loss (CE) through the additional factor −𝛼𝑡(1 − 𝑝𝑡)𝛾 . The
parameter 𝛼 ranges from 0 to 1 and attempts to tackle the class imbalance directly by amplifying the loss from the
minority class. It is usually set as the inverse class frequency or tuned on the validation set. The parameter 𝛾 attempts
to reduce the loss contributed by high confidence classifications, namely the easy examples, and generally is in the
range from 0 to 5 to be effective. These parameters prevent the model from being overwhelmed by the easy negatives
and enable the model to focus on the minority positives. Lin et al. (2017) reported that detectors trained with FL showed
superior accuracy results compared to state-of-the-art detectors trained with BCE loss.
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Figure 7: Sequential Twitter CNN model. We use Ci for convolutional layer i, Si for subsampling layer i, and FC for fully
connected dense layer. A ReLu activation is applied after each convolutional layer, as well as after the last fully connected
layer. A dropout of 0.5 is applied on the first fully connected layer. The final prediction is made with softmax.

Hyperparameters The model was implemented in PyTorch, and we used the standard Adam optimiser with PyTorch
default parameters. For the Sequential CNN model, we added L2 regularisation through the Adam optimizer’s
𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 parameter set at 0.0005 to 0.001 to prevent overfitting. A ReLU activation is applied after each
convolutional layer. A dropout of 0.5 is applied on the first fully connected layer. Additionally, ReLU activations
are also applied after fully connected layers in the Sequential CNN model.

The performance of the sequential and parallel CNN models will be compared in the experiment section. We should
note that the sequential CNN is computationally more expensive as the model has 7.6 million trainable parameters
versus the 2.6 million in the parallel model, this may provide difficulties when training on small datasets. Yet, these
layer, loss function, and kernel related hyperparameters were chosen based on best performance with trial-and-error
on the validation set. The original training set was split is a (language) training set (90%) and a (language) validation
set (10%). The workflow used to develop (finetune, train, and test) the CNN models is illustrated in Algorithm 2.
4.2. SVM Model with TA data

We implemented a Support Vector Machines (SVM) model (Cortes and Vapnik, 1995) for making extreme price
movement predictions using only the TA data. In the following text we will refer to the SVM model with TA data
as TA SVM or TA model. The TA model takes as input all available TA data as described in Section 3.2, including
candlestick data, and technical indicators including correlated assets, to predict extreme price movement (up/down 2-
5%). We experimented with several simple models and compared their F1-scores (best F1-score in bracket for task up
5%). These models include logistic regression (0.79), support vector machines (SVM) (0.97), a 2-layered feed-forward
neural network with dimensions 512 (0.90), as well as a 1-layered long-short term memory model (LSTM) with a
hidden dimension of 256 (0.86). From these test, we have selected the best performing model –SVM– to use as part of
our model. While this model may seem simple, its performance makes sense given the limited size of our dataset.
Model Input This model will take as input all of the features described in Section 3.2: OHLCV data as well as 13
technical indicators, resulting in a total of 19 features per day. To provide additional historical price information, we
concatenated this data in windows of 5 days. This resulted in a final input size of 1 × 95. We experimented with
Principle Component Analysis (PCA) values to reduce the dimension of the input, however, it did not produce better
results. Thus, in the final version of the model, no PCA was applied.

The TA SVM model was implemented with Scikit-learn. Based on trial-and-error, we opted to use the Radial
Basis Function (RBF) kernel. The RBF kernel has 2 input parameters: C and gamma. We performed a Grid Search to
determine the optimal C and gamma. This search used 4-fold cross validation with the F1-score as the evaluation metric
to guide the search. The reason for using F1-score as the evaluation criteria will be discussed further in Section 5. The
workflow used to develop (finetune, train, and test) the SVM model is shown in Algorithm 1.
4.3. PreBit Fusion Model

The proposed Fusion model takes the prediction probabilities output by the Twitter and TA model as input and
makes a final prediction about the extreme price movement. An overview of the Fusion model can be found in Figure 5.
Model Input The input to the Fusion model consists of the probabilities for the positive class from the Twitter model
and TA model. More specifically, for the TA SVM model, we applied a sigmoid function to the decision function
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output. For Twitter model, we took the model output after the softmax function. The resulting probabilities from both
models were concatenated so they were of size 1 × 2. This small vector forms the input to the fusion model.
Model Architecture We experimented with several models such as feed-forward neural networks (FNN), logistic
regression, SVM with RBF kernel and SVM with polynomial kernel. Except for the neural network models, who were
implemented in PyTorch, we used Scikit-learn to implement all the models. Given the limited size of our input dataset,
and the results from this trial-and-error experiment, we proceeded to use SVM in our final experiments. The parameter
selection process was conducted similar to that of the TA SVM model. The workflow used to develop (finetune, train,
and test) the PreBit Fusion model is illustrated in Algorithm 3.
Algorithm 1 Workflow for finding the best Model (SVM) with TA data.

1: for Task 𝑛 ∈ {+5,−5,+2,−2} do ⊳ Ready data
2: 𝑋, 𝑌 ← loadTADataset()
3: 𝑋train, 𝑋test ← percentageSplit(𝑋, 85% ∶ 15%)
4: 𝑌train, 𝑌test ← percentageSplit(𝑌 , 85% ∶ 15%)

⊳ Tune parameters of model
5: 𝑝SVM = [𝑐 = [0.1, 0.5, 1, 10, 30, 40, 50, 75, 100, 500, 1000], 𝛾 = [0.01, 0.05, 0.07, 0.1, 0.5, 1, 5, 10, 50]]
6: modelList = {SVM RBF kernel, SVM polynomial kernel}
7: for model 𝑚 ∈ modelList do
8: Grid Search with parameters 𝑝SVM using crossValidationSplit(𝑋train, 4)
9: end for

⊳ Report best model
10: Select model 𝑚best_ta with highest F1-score
11: Report metrics for prediction on 𝑋test made by 𝑚best_ta trained on 𝑋train

return 𝑚best_ta
12: end for

Algorithm 2 Workflow for finding the best CNN Model with Twitter data.
1: for Task 𝑛 ∈ {+5,−5,+2,−2} do ⊳ Ready data
2: 𝑋, 𝑌 ← loadTwitterDataset()
3: 𝑋 ← textPreprocess(𝑋)
4: 𝑋 ← extractFinBERTembeddings(𝑋)
5: 𝑋train, 𝑋val, 𝑋test ← percentageSplit(𝑋, 76.5% ∶ 8.5% ∶ 15%)
6: 𝑌train, 𝑌val, 𝑌test ← percentageSplit(𝑌 , 76.5% ∶ 8.5% ∶ 15%)

⊳ Tune parameters of model
7: modelList = {Parallel CNN, Sequential CNN}
8: 𝑝loss = [𝛼 = [0.1 to 1.0], 𝛾 = [0, 1, 2, 3, 4, 5]]
9: for model 𝑚 ∈ modelList do

10: for loss function ∈ {Cross Entropy Loss, Focal Loss[𝑝loss]} do
11: Train 𝑚 using 𝑋train and 𝑌train
12: end for
13: end for

⊳ Report best model
14: Select model 𝑚best_twitter with highest F1-score on validation set (𝑋val and 𝑌val)
15: Report metrics for prediction on 𝑋test made by 𝑚best_twitter trained on [𝑋train +𝑋val, 𝑌train + 𝑌val]

return 𝑚best_twitter
16: end for
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Algorithm 3 Workflow for finding the best PreBit Fusion Model.
1: for Task 𝑛 in {+5,−5,+2,−2} do ⊳ Ready data
2: 𝑥, 𝑌 ← loadTADataset()
3: 𝑃TA ← getProbability(𝑚best_ta)
4: 𝑃Twitter ← getProbability(𝑚best_twitter)
5: 𝑋 ← (𝑃TA, 𝑃Twitter)
6: 𝑋train, 𝑋test ← percentageSplit(𝑋, 85% ∶ 15%)
7: 𝑌train, 𝑌test ← percentageSplit(𝑌 , 85% ∶ 15%)

⊳ Tune parameters of model
8: modelList = {Logistic regression, SVM RBF kernel, SVM polynomial kernel}
9: for model 𝑚 ∈ modelList do

10: if 𝑚 = SVM then
11: Grid Search with parameters 𝑝SVM using crossValidationSplit(𝑋train, 4)
12: else if 𝑚 = Logistic regression then
13: Train 𝑚 using 𝑋train and 𝑌train
14: end if
15: end for

⊳ Report best model
16: Select model 𝑚best_fusion with highest F1-score
17: Report metrics for prediction on 𝑋test made by 𝑚best_fusion trained on 𝑋train return 𝑚best_fusion
18: end for

⊳ Threshold experiment for Task +5%
19: if 𝑛 = +5 then
20: thresholdList = {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}
21: 𝑇fusion ← getDecisionFunction(𝑚best_fusion)
22: for threshold 𝜏 ∈ thresholdList do
23: for instance ∈ 𝑋test do
24: if f 𝑇fusion ≥ 𝜏 then
25: Label as positive prediction
26: else
27: Label as negative prediction
28: end if
29: return Predictions and confusion matrix of 𝑚best_fusion for 𝑋test
30: end for
31: end for
32: end if

5. Experimental setup
We want to uncover which elements of our hybrid multimodal model contribute most to accurately predicting

extreme BTC price movements. In particular, we are interested to explore if the model accuracy improves by
incorporating a predictive model based on Twitter data in our hybrid architecture. To properly explore this question
we have performed an ablation study for each of our four tasks: will the BTC price go up by 5%, down by 5%, up by
2%, and down by 2% on the next day. Separate models were trained for each task.

For each task, five models were evaluated in an ablation study to determine which input modality has the potential
to improve predictions, and which CNN architecture is most efficient. These five models that were compared are the:

• TA SVM model;
• Twitter CNN model (parallel);
• Twitter CNN model (sequential);
• Fusion model (parallel) - using output from parallel CNN model as part of the input; and the
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Algorithm 4 Workflow for backtesting the different models.
1: for period in {full period, bull period, bear period} do ⊳ Setup
2: strategyList= {Buy and Hold, 7-D and 21-D MA Cross, TA SVM, Fusion model, Fusion model 0.95 threshold,

Fusion model 0.99 threshold}
3: cash ← USD 100, BTC ← 0

⊳ Process buy signals
4: for strategy in strategyList do
5: signalList ← getBuySignals(strategy)
6: for time 𝑡 in period do
7: signal ← signalList(𝑡)
8: if signal is buy and BTC position is nil then
9: Buy BTC with 100% of cash ⊳ Close positions after a day

10: else if BTC position opened at 𝑡 − 1 then
11: Sell 100% of BTC
12: else
13: No action
14: end if
15: end for
16: end for
17: return Action history and strategy performance metrics
18: end for

• Fusion model (sequential) - using output from sequential CNN model as part of the input.
We should note that we cannot compare our model directly to other existing models as they typically use proprietary

data sources, and do not always have their source code available. In addition, the published results of existing models
are based on different time frames, hence they are not directly comparable. To address this issue, we have created
two random baseline models. We ran simulations for 1,000 times and reported their average and the 95% confidence
interval of the performances with the above mentioned five models in Table 3, 4, 5, and 6:

• A uniformly random model that predicts class 1 half of the time, and otherwise class 0;
• A stratified model that predicts class 1 and 0 according to their class distribution in the test set.

5.1. Training-Test Split
The dataset includes data from 1 January 2015 until 31 May 2021, and consists of a total of 2,337 entries after

clean-up. For our experiments, we split the data into a training set and a test set. The latter consists of the last 1 year of
our data, i.e. from 1 June 2020 until 31 May 2021, totalling 365 entries. This makes the split ratio around 5.4:1. The
Bitcoin price during the test period includes a long bull run as well as a bear period (see Figure 10). Thus, we believed
this to be as a good period to evaluate our model on. The non-stationary nature of the data makes it hard to generalize
results, hence, we selected a test period with both types of markets to compensate as best as possible (De Prado, 2018).
All of the hyperparameter tuning was done only on a validation set which was part of the original training set (see
Table 2). For the Twitter CNN model, the training set was further split into a training and validation set with 9:1 ratio.
We used the validation set to select the optimal hyperparameters including: Focal Loss parameters - 𝛼 and 𝛾 , number of
filters, number of layers and dropout ratio. For the TA and Fusion SVM models, 4-fold cross validation (on the training
set) was used during the Grid Search for parameter tuning.
5.2. Evaluation metrics for predictive model

A very commonly used metric for any classification task is prediction accuracy. Although this provides an overview
of the model performance, for datasets with noticeable class imbalance such as ours, accuracy alone is not enough.
Therefore, we also include precision, recall, as well as F1-score. The latter is a comprehensive measure that accounts
for both precision and recall rate for the prediction output as it is their harmonic mean. This means that both false
positives as well as false negatives are considered. In addition, we report the confusion matrices to provide more
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complete insight into misclassifications. In our case this is particularly important as traders may be more interested to
be absolutely certain of their model’s predictions, and care less about missed opportunities, depending on their risk
appetite, and hence want to focus on maximizing precision. We will illustrate this further in the backtesting section,
whose setup is explained in the next subsection. In addition, we also compare our model performance to that of the
baseline models. To reduce the variance in the baseline model performance, we ran 1,000 simulations and show the
average performance as well as the 95% confidence interval for each of the aforementioned metrics in Tables 3, 4, 5,
and 6.
5.3. Trading strategy backtesting

To further evaluate how our model signals may be helpful in reducing risk during trading, we propose simple
long-only trading strategies and analyse them with backtesting. The backtesting period is the same as the test set
coverage, from 1 June 2020 until 31 May 2021. We assume no leverage, no transaction fees, complete liquidity and
instant transactions without slippage.

Since our models performed best for Task 1 (predict up 5% BTC price), we have focused our trading strategy on
this model. Both the TA and Fusion model (sequential) showed higher performance than the other models, they were
used to construct the trading signals.
Trading strategy We implemented the following trading rules: if the model predicts a 5% upward price movement
for the next day, it flags a buy signal. We then buy 100% of all the cash holdings at the closing price of the day. The
holding period is always set to one day, i.e., we always sell at the closing price the next day after buying. We limit
the strategy to perform only one action per day, either buy, hold or sell. When there are consecutive days of buying
signals, we only buy and hold during the first day. The occurrence of the aforementioned situation is rare during our
test period, thus it has limited impact on the performance.
Baselines and metrics In addition to the TA SVM and Fusion model (sequential), we have included four other
strategies for comparison in our backtesting:

• Buy and Hold - Buy on the first day and sell on the last. A commonly use baseline comparison.
• 7-D and 21-D Moving Average (MA) Cross - Buy when the 7-D MA goes above the 21-D, sell when 7-D MA

dives below the 21-D MA. Sometimes it is referred to as the ‘Golden Cross’. It is a classic trading strategy
capitalising on momentum (Liu et al., 2021).

• Fusion model (sequential) with 0.95 prediction threshold - This is a variation on our Fusion model (sequential).
The original Fusion model predicts between two classes by comparing the probability for each class to the default
threshold 0.5. If the model’s output probability is greater than 0.5, the predicted class will be positive. In this
variation, we have increased this threshold to 0.95, meaning that the model only predicts the positive class only
if it has extremely high confidence. We explore the influence of this on reducing the risk of the trading strategy.

• Fusion model (sequential) with 0.99 prediction threshold - Similar to the above model, but with threshold set
extremely high at 0.99.

To evaluate the backtesting results, we examine the following metrics:
• Profit % - The percentage of profit made. This reflects the overall performance of the strategy during the period.
• Sharpe Ratio - A risk-adjusted measure of the return (Sharpe, 1998). The risk-free interest rate is assumed to be

0 in our calculation.
• Sortino Ratio - A variation of the Sharpe ratio that only factors in the downside risk (Chaudhry and Johnson,

2008).
• Max Drawdown % - An indicator for downside risk over the full trading period. It measures the maximum

observed loss of the portfolio.
• Win % - The ratio of profitable trades.
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Table 3
Performance results for the Task Up 5%. We use P for parallel, S for sequential.

Models Precision Recall F1-score Accuracy
T F T F T F Weighted

TA SVM 0.32 0.85 0.22 0.91 0.26 0.88 0.78 71.23
Twitter CNN (P) 0.20 0.86 0.47 0.62 0.28 0.72 0.65 59.22
Twitter CNN (S) 0.18 0.93 0.95 0.13 0.22 0.30 0.24 26.10
Fusion model (P) 0.31 0.89 0.48 0.78 0.37 0.83 0.76 73.42
Fusion model (S) 0.31 0.89 0.50 0.78 0.38 0.83 0.76 73.70

Random baseline model 0.16 0.83 0.49 0.50 0.24 0.63 0.56 49.91
95% confidence interval 0.13-0.20 0.80-0.87 0.38-0.62 0.48-0.52 0.19-0.31 0.60-0.66 0.53-0.60 46.30-53.97
Stratified baseline model 0.16 0.84 0.16 0.84 0.16 0.84 0.72 72.49
95% confidence interval 0.08-0.25 0.82-0.85 0.08-0.25 0.82-0.85 0.08-0.25 0.82-0.85 0.69-0.75 69.86-75.34

Table 4
Performance results for the Task Up 2%. We use P for parallel, S for sequential.

Models Precision Recall F1-score Accuracy
T F T F T F Weighted

TA SVM 0.61 0.63 0.49 0.73 0.54 0.67 0.61 61.91
Twitter CNN (parallel) 0.48 0.62 0.80 0.27 0.60 0.37 0.48 52.48
Twitter CNN (sequential) 0.48 0.61 0.81 0.25 0.60 0.36 0.47 51.08
Fusion model (parallel) 0.62 0.67 0.60 0.68 0.61 0.67 0.64 64.38
Fusion model (sequential) 0.54 0.66 0.70 0.50 0.61 0.57 0.59 58.90

Random baseline model 0.46 0.54 0.50 0.50 0.48 0.52 0.50 50.01
95% confidence interval 0.41-0.51 0.49-0.59 0.44-0.55 0.45-0.55 0.42-0.53 0.47-0.57 0.45-0.55 44.66-55.07
Stratified baseline model 0.46 0.54 0.46 0.54 0.46 0.54 0.50 50.30
95% confidence interval 0.40-0.51 0.49-0.58 0.40-0.51 0.49-0.58 0.40-0.51 0.49-0.58 0.45-0.55 45.20-55.07

• Number of Trades - The number of trades made, which may be dependent upon the transaction costs. Note that
in this low-frequency trading scenario, we omit the trading costs. For a more comprehensive analysis of more
complex trading strategies this should be included in future work.

In the next section, the various results of our experiments are discussed.

6. Results
We ran a number of different experiments. First, an ablation study was conducted to examine the influence of the

different parts of our proposed hybrid multimodal model on the prediction accuracy for each of the four tasks. Next,
the best models were used to construct basic trading strategies for which we report the backtesting results and explore
if they can be used to mitigate risk and exposure to volatility. When constructing the strategies, we also investigate the
influence of probability thresholds on risk reduction.
6.1. Influence of different modalities

To explore the influence of each of the separate components of our multimodal model on the prediction accuracy,
we performed an ablation study for each of the four predictive tasks. For each task, we report the best performing
model in terms of the aforementioned evaluation criteria as well as the hyperparameters used in Tables 3, 4, 5, 6.
The tables also include the results for the random baseline models. The reported evaluation metrics include precision,
recall, F1-score and overall accuracy on the test set. Given the class imbalance in our dataset, we pay special attention
to the F1-score for positive class, weighted F1-score, the positive class precision as well as the recall rate. Positive class
precision has practical significance because if a trading strategy is built upon the model predictions, higher precision
indicates higher confidence which may be useful information when executing a buy or sell signal. While a positive
class recall rate means that the proposed trading strategy would capture as many buy signals as possible, thus resulting
in a lower opportunity cost for missing out.

Overall, the performance of the proposed models is higher than the random baselines. We also we observe a better
performance by the Fusion models, compared to the individual modality models, on the tasks related to upward price
prediction compared to the TA SVM models, thus confirming the importance of incorporating Twitter content. For the
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Table 5
Performance results for the Task Down 5%. We use P for parallel, S for sequential.

Models Precision Recall F1-score Accuracy
T F T F T F Weighted

TA SVM 0.40 0.87 0.28 0.92 0.33 0.89 0.80 81.36
Twitter CNN (parallel) 0.20 0.94 0.90 0.31 0.33 0.46 0.44 40.63
Twitter CNN (sequential) 0.14 0.81 0.38 0.53 0.20 0.64 0.57 50.27
Fusion model (parallel) 0.37 0.87 0.28 0.90 0.32 0.88 0.79 80.27
Fusion model (sequential) 0.40 0.87 0.28 0.92 0.33 0.89 0.80 81.37

Random baseline model 0.16 0.83 0.50 0.50 0.25 0.63 0.56 49.99
95% confidence interval 0.13-0.20 0.80-0.87 0.38-0.62 0.48-0.52 0.19-0.31 0.60-0.66 0.53-0.60 46.30-53.97
Stratified baseline model 0.16 0.84 0.16 0.84 0.16 0.84 0.72 72.49
95% confidence interval 0.08-0.25 0.82-0.85 0.08-0.25 0.82-0.85 0.08-0.25 0.82-0.85 0.69-0.75 69.86-75.34

Table 6
Performance results for the Task Down 2%. We use P for parallel, S for sequential.

Models Precision Recall F1-score Accuracy
T F T F T F Weighted

TA SVM 0.55 0.56 0.43 0.67 0.49 0.63 0.56 56.71
Twitter CNN (parallel) 0.50 0.67 0.91 0.17 0.65 0.28 0.45 53.85
Twitter CNN (sequential) 0.44 0.42 0.66 0.23 0.53 0.29 0.41 43.34
Fusion model (parallel) 0.56 0.57 0.46 0.66 0.50 0.62 0.56 56.44
Fusion model (sequential) 0.54 0.56 0.48 0.62 0.51 0.59 0.55 55.34

Random baseline model 0.48 0.52 0.50 0.50 0.49 0.51 0.50 50.11
95% confidence interval 0.43-0.53 0.48-0.57 0.45-0.55 0.46-0.55 0.44-0.54 0.47-0.56 0.46-0.55 45.48-54.79
Stratified baseline model 0.48 0.52 0.48 0.52 0.48 0.52 0.50 50.24
95% confidence interval 0.43-0.53 0.47-0.57 0.43-0.53 0.47-0.57 0.43-0.53 0.47-0.57 0.45-0.55 45.21-55.07

Task Up 5%, (Table 3), the Fusion model (sequential) shows a higher positive class F1-score as well as a higher overall
accuracy compared to the models based on individual modalities.

Looking at the precision/recall as well as the confusion matrices (Figure 8), we see that the SVM TA model is
good at predicting true negatives, but misses a lot more true positives. In a trading scenario, we can interpret this as:
the model may miss some opportunities as its predictions would be safer, more risk averse. This is the opposite of the
models based on Twitter data, who perform the worst. It makes sense that their performance is less. In real-life, no
trader would make trading decisions based purely on twitter information, without even glancing at the price data. The
fusion models provide a balance between these two extremes, which is reflected in the higher F1 score as well as the
confusion matrices in Figure 8. For instance, the Fusion models were able to accurately predict around twice as many
true positives for the Up 5% Task, all the while maintaining the performance in terms of precision. From a practical
point of view, this means that a trading strategy based on these signals may have twice as many winning trades and
thus incur less opportunity cost due to staying market neutral. For Task Up 2% (Table 4), the good performance of the
Fusion model (parallel) is even more apparent. The improvements may be due to the fact that Fusion models are able
to incorporate and capture more information than the individual models. Except for negative class recall rate, all other
metrics show improvements compared to the other models. Looking at Task Down 5 and 2 % respectively (Tables 5
and 6), the models have a comparable performance and the improvements due to the Twitter model are less obvious.
This may be due to the fact that the TA SVM model is already quite good, arguably because of the strong correlation
between Bitcoin price and some of the model inputs like Ethereum price and 20-day standard deviation of price (see
Figure 4). In future research, this effect may be increased by focusing on tweets by influencers in the ‘Crypto-Twitter
sphere’ instead of random tweets that mention Bitcoin, or by finetuning our word embedding representation to capture
crypto- and Twitter-specific vocabulary.

While comparing the Fusion model performance to the average performance of the random baseline models, we
observed better results across all tasks and in almost every evaluation metric. Since the stratified prediction model
clearly outperforms the uniformly random prediction model, we focus on comparing our models to the stratified
prediction model in the following discussion. The superior performance of Fusion models is clear for Task Up 2%
and Down 5%. In these two tasks, the Fusion model outperforms the 95% confidence interval (CI) upper bound of the
stratified prediction model simulations in every metric. The performance is closer for Task Up 5% and Down 2%. In
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Figure 8: Confusion Matrices.

Task Up 5%, even though the upper bound of the 95% CI exceeds the Fusion model in terms of overall accuracy, it loses
out by a large margin in precision, recall, and F1-score for the True class. And as mentioned in previous sections, these
metrics are especially important to us due to the imbalanced class distribution of the dataset. Similarly in Task Down
2%, the Fusion model’s performance comes very close to the 95% confidence interval upper bound of the stratified
model, if not slightly better. Admittedly, it is not an easy task to prove that the results are statistically significant.
We have explored statistical tests such as the Diebold-and-Mariano test Diebold and Mariano (2002). Unfortunately,
the resulting p-values do not meet the criteria to reject the null hypothesis. We should, however, note that this test
was designed to interpret regression forecasts, thus a lot less applicable to 0-1 classification classes. And as stated by
Diebold (2015), it is not intended for model selection. Hence, we offer these results as is with the 95% confidence
interval, and in future research, we recognise that a more robust test should be performed on a larger test set.

When evaluating these models we should keep in mind the high class imbalance present in our dataset. In addition,
since these predictions are quite directly translatable for use in a trading strategy, a resulting trading strategy could easily
reach a win rate in the range of 50-60%. Such rates are considered quite promising and may obtain good returns. A full
analysis of a naive trading strategy is provided in Section 6.3. Overall, our proposed models have a good performance,
with the upward extreme movement prediction models being successfully improved by adding Twitter models.
6.2. Predictive threshold tweaking

Before diving into an actual trading strategy that may be built upon our proposed models, it is important to consider
the predictive threshold, especially since it has a direct influence on risk reduction. Our models were optimized based
on F1-score, the harmonic mean of precision and recall rates, two metrics that can be traded off for one another by
changing the predictive threshold.

The Fusion model’s classification decisions are derived by comparing the SVM’s output decision function to a
threshold (0.5 as default). The parameters and decision functions for the SVM models have been optimized on the
training dataset and fixed before getting the results on the testing set. Therefore, moving the threshold does not alter
any model state, but only changes the reported classification results. If a higher precision rate (high-confidence positive
class predictions) is desired, a higher threshold could be explored (Yu et al., 2015), as it only allows predictions with
higher certainty to be classified as positive.
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Table 7
Backtesting results the full test period.

Strategies Profit % Sortino Sharpe Max Drawdown % Win% Num of Trades

Buy and Hold 249.3 3.28 2.08 45.5 N.A N.A
7-D and 21-D MA Cross 199.7 3.60 2.17 37.7 40.0 10
TA SVM 60.4 3.62 1.56 16.0 58.0 31
Fusion model 1.4 0.26 0.18 12.4 56.0 50
Fusion model 0.95 threshold 49.9 3.02 1.39 14.9 55.6 36
Fusion model 0.99 threshold 56.6 3.45 1.49 16.0 56.6 30

Table 8
Backtesting results the bull period.

Strategies Profit % Sortino Sharpe Max Drawdown % Win% Num of Trades

Buy and Hold 345.5 8.10 4.50 25.1 N.A N.A
7-D and 21-D MA Cross 96.0 4.16 2.43 29.9 75.0 5
TA SVM 36.6 4.65 1.90 9.8 63.2 19
Fusion model 12.9 1.72 1.09 12.4 57.1 28
Fusion model 0.95 threshold 50.4 5.97 2.40 8.3 68.2 22
Fusion model 0.99 threshold 33.4 4.32 1.77 9.9 61.1 18

We report different confusion matrices based on a much higher decision threshold (0.95 and 0.99) in the best
performing Fusion models for both Task Up 5% and 2% in Figure 9. For Task Up 5%, the Fusion model (sequential)’s
precision rate for the positive class improved slightly. The confusion matrices report a quite different amount of true
positives. The improvement is more evident for the Fusion model (parallel) for Task Up 2%, with a peak at the 0.95
threshold.

In the next section, we will uncover the full impact of this threshold tweaking on the trading strategy.

Figure 9: Confusion Matrices for Threshold Tuning.

6.3. Backtesting results
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Table 9
Backtesting results the bear period.

Strategies Profit % Sortino Sharpe Max Drawdown % Win% Num of Trades

Buy and Hold -40.5 -4.27 -3.33 45.5 N.A N.A
7-D and 21-D MA Cross -6.3 -1.03 -0.86 16.0 0.0 1
TA SVM 32.0 12.72 4.30 6.3 85.7 7
Fusion model -5.5 -1.54 -1.12 10.6 50.0 8
Fusion model 0.95 threshold 17.0 6.96 2.89 6.3 71.4 7
Fusion model 0.99 threshold 32.0 12.73 4.30 6.3 85.7 7

Backtesting We implemented a simple, naive trading strategy based on the predicted classes for by our Fusion model
as explained in Subsection 5.3. Since the best overall predictive results (in terms for F1-score) were obtained for
predicting a 5% increase in BTC price over the next day (see Table 3), we have opted to further evaluate our models’
performance for this task with backtesting.

The backtesting statistics were calculated using the library vectorbt 8. We report the results for our entire test period
in Table 7. Whenever we are evaluating financial data, the non-stationarity of the data poses limitations and skews the
metrics (De Prado, 2018). A rolling window test set may prove to be a slightly better representation, however, it would
limit the amount of data we have to train our models. Hence, we ensured that our test period is long enough (1 entire
year), and contains a steed upward (bull) as well as downward (bear) period. We report the results for the bull and bear
periods separately in Tables 8, and 9.

Looking at the entire test period (Table 7), a Buy and Hold strategy achieves the highest Profit %. This is
unsurprising given the rising trend in Bitcoin in the long run. This performance has a huge risk exposure, however,
with a maximum drawdown (MDD) of 45.5%. Not many investors would be willing to risk almost half of their capital
before seeing gains. Hence, we explore how our models can be used to provide a more market neutral strategy with
lower risk exposure.

The Sortino ratio gives us an impression of risk free returns (excluding the upwards volatility, which is still included
in the Sharpe ratio). Our proposed TA model achieves the highest Sortino ratio, followed closely by 7-D and 21-D
MA Cross as well as the Fusion model with 0.99 threshold. The TA SVM model has a significanlty lower maximum
drawdown of 16% compared to the Buy and Hold drawdown of 45.5%, while still obtaining a nice 60% in returns with
only 31 days of market exposure over the entire year. A similar result is obtained by the Fusion model with 0.5 and
0.99 threshold.

When comparing the result of the three Fusion models, we observe consistently better results with the 0.95 threshold
over the default threshold (0.5). Raising the threshold from 0.95 to 0.99, however, does not always yield enhanced
performance. Threshold tweaking based on the strategy in use is essential. In future research, the impact of threshold
selection based on custom, more advanced trading strategies could be investigated. We may also explore using different
fusion techniques, such as early fusion. Overall, it would be good to test the generalisability and robustness of this model
using more data, different market conditions, and assets.

Looking closer at the bull period (days 150-350) in Figure 10, we notice that, as expected, the Buy and Hold strategy
performs very well, although still with a 25% MDD. The proposed TA SVM and Fusion model with 0.95 threshold
still achieve impressive performance in terms of Sortino ratio (4.65 and 5.97 respectively) and MDD (9.8% and 8.3%
respectively), while sacrificing some profits for this reduced risk.

It is during bear periods that the usefulness of our proposed models really becomes apparent. Table 9 shows the
trading results for the bear period (day 315 to day 365). During the bear period, both the TA SVM as well as the
Fusion model with 0.95 and 0.99 threshold perform significantly better than the buy and Hold and the MA Cross
benchmark models. While the latter is down as much as -40.5% profit, the TA SVM and Fusion model with 0.99
threshold reaches 32% profit. This nicely illustrates the usefulness of our proposed strategy, because while Bitcoin has
seen tremendous growth, it also goes through extensive bear periods where risk management is essential. It is worth
noting that this backtest is performed on a limited period in time, with a small number of trades, hence we could not

8https://github.com/polakowo/vectorbt
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Figure 10: Bitcoin price during the entire test period.

perform a statistical significance test of these results. In future research, the model and trading strategy could be tested
on different market conditions to further examine its robustness.

7. Conclusion
Bitcoin, and cryptocurrencies, are known for their volatile nature. We propose a cutting-edge multimodal model,

PreBit, to predict extreme Bitcoin price movements (up/down 2 or 5 percent). In order to train our model, we created
a new publicly available dataset, which includes 9,435,437 tweets that include the keyword ‘Bitcoin’ from 1 Jan 2015
until 31 May 2021. We also included based candlestick price/volume data, as well as selected technical indicators and
correlated asset prices (Ethereum and gold). The resulting multimodal ensemble model uses normalized data, as well
as the finBERT context embeddings to provide a meaningful representation of our Twitter data. The trained model and
source code used in this manuscript is available online9.

In a thorough experiment, we perform an ablation study to compare the influence of adding the Twitter model
or TA model to our hybrid model. This shows that adding prediction based on Twitter content improves the overall
performance of the model for upward Bitcoin price prediction. Our proposed Fusion models demonstrate superior
performance in positive class F1-score as well as overall accuracy in upward price prediction tasks compared to the
TA SVM which uses only price and technical analysis data.

To further evaluate our model’s performance and demonstrate its practical use, we propose a simple (long only)
trading strategy and reported the backtesting results for our models that predict Up 5% price movement. During this
backtesting, we explored the influence of tweaking the predictive threshold on risk management. The results confirm
the superior performance of our proposed TA SVM model as well as our multimodal Fusion model with 0.95 threshold
in risk-adjusted measures such as Sortino ratio and maximum drawdown. While Buy and Hold strategies typically work
well for Bitcoin and obtain huge profits, the risks can be substantial, with max. drawdown reaching 45.5% in our test
period. Our models substantially reduce this risk while maintaining an impressive profit ratio.

The usefulness of our proposed approach becomes especially apparent during the bear market, when our Fusion
strategy manages achieved 32% Profit (with long positions only), despite the fact that the Bitcoin price was down
by -40.5%. We further observe that a carefully selected probability threshold can significantly improve the trading
performance and lower the market exposure risk.

However, as aforementioned, the evaluation and backtest is performed on a limited period in time. Potential threats
to the model validity could be if the amount of tweets selected is not representable of the day. With more and more posts
being made about Bitcoin, 5000 may not be a large enough sample to capture the entire market sentiment. Selecting
these tweets from famous Bitcoin influencers may provide a remedy for this as they are seen and liked by a large
number of followers. Recent work by Otabek and Choi (2022) confirms that tweets by users with the a high leverl of

9https://github.com/AMAAI-Lab/PreBit
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Figure 11: Trading strategy based on the TA model during the bear period.

followers consequently have a influence on a future BTC price. In addition, the Bitcoin market is very recent. As more
price history builds up, predictions will get more and more accurate. Given the non-stationarity of such price series,
we should also consider that we could have coincidentally taken a good or bad period concerning model accuracy. To
generalise, it would be good in the future to train on a rolling window and do cross-validation over multiple out-of-time
test sets. It would also be extremely interesting to test this on other digital assets such as Ethereum, Solana, and more
unknown (and volatile) assets such as FLOW.

This work opens up many avenues for future research. For instance, the Twitter dataset could be more effective
for predictions if it only includes tweets by influencers in the ‘crypto-Twitter sphere’, such as Elon Musk, CEOs
of cryptocurrency exchanges, and many more. In addition, we may finetune the finBERT model to better capture
cryptocurrency-specific as well as Twitter-specific lingo. Finally, the resulting multimodal model’s prediction threshold
may be further finetuned with a more complex trading strategy, possibly including the model’s class probability to size
positions, to outperform the benchmark provided for our new dataset in this research.
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Table 10
The Pearson correlation values between the features in our dataset.
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Table 11
The p-values for the Pearson correlation between features in our dataset.
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B. Optimized hyperparameters
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Table 12
Optimal hyperparameters based on the validation set, and that are used for the results obtained in Section 6.

Models Task Up 5% Task Up 2% Task Down 5% Task Down 2%

TA SVM 𝑅𝐵𝐹 ,𝐶 = 50, 𝑔𝑎𝑚𝑚𝑎 = 0.5 𝑅𝐵𝐹 ,𝐶 = 500, 𝑔𝑎𝑚𝑚𝑎 = 0.1 𝑅𝐵𝐹 ,𝐶 = 1000, 𝑔𝑎𝑚𝑚𝑎 = 0.1 𝑅𝐵𝐹 ,𝐶 = 1000, 𝑔𝑎𝑚𝑚𝑎 = 0.1
Twitter CNN (P) 𝛼 = 0.12, 𝛾 = 1 CE loss 𝛼 = 0.12, 𝛾 = 1 CE loss
Twitter CNN (S) 𝛼 = 0.12, 𝛾 = 1, 𝐿2𝑤𝑒𝑖𝑔ℎ𝑡 = 0.0005 CE loss 𝐿2𝑤𝑒𝑖𝑔ℎ𝑡 = 0.001 𝛼 = 0.12, 𝛾 = 1, 𝐿2𝑤𝑒𝑖𝑔ℎ𝑡 = 0.0005 CE loss 𝐿2𝑤𝑒𝑖𝑔ℎ𝑡 = 0.001
Fusion model (P) 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝐶 = 500, 𝑔𝑎𝑚𝑚𝑎 = 50 Logistic regression Logistic regression 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝐶 = 10, 𝑔𝑎𝑚𝑚𝑎 = 10
Fusion model (S) 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝐶 = 30, 𝑔𝑎𝑚𝑚𝑎 = 50 Logistic regression Logistic regression 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝐶 = 10, 𝑔𝑎𝑚𝑚𝑎 = 50
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