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Abstract

What audio embedding approach generalizes best to a wide range of downstream tasks
across a variety of everyday domains without fine-tuning? The aim of the HEAR 2021
NeurIPS challenge is to develop a general-purpose audio representation that provides a
strong basis for learning in a wide variety of tasks and scenarios. HEAR 2021 evalu-
ates audio representations using a benchmark suite across a variety of domains, including
speech, environmental sound, and music. In the spirit of shared exchange, each participant
submitted an audio embedding model following a common API that is general-purpose,
open-source, and freely available to use. Twenty-nine models by thirteen external teams
were evaluated on nineteen diverse downstream tasks derived from sixteen datasets. Open
evaluation code, submitted models and datasets are key contributions, enabling compre-
hensive and reproducible evaluation, as well as previously impossible longitudinal studies.
It still remains an open question whether one single general-purpose audio representation
can perform as holistically as the human ear.

Keywords: audio representations, representation learning, embeddings, transfer learning,
multi-task learning, multi-modal learning, classification, tagging
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1. Introduction

The codification of strong general-purpose representations in natural language and com-
puter vision has led to a renaissance in multimodal modeling and increased cross-discipline
collaboration. Audio is an equally rich source of information about the world, but outside
of speech recognition it has not achieved the same degree of attention from the machine
learning community. This is a key challenge for the community, as good representations sup-
port good machine learning. And robust evaluation enables general representations. Broad
evaluation suites help prevent overfitting to common test sets (Recht et al., 2018) and have
improved the state-of-the-art on language and vision representation learning (Wang et al.,
2019b,a; Goyal et al., 2019; Zhai et al., 2019; DeYoung et al., 2020). In general practice,
audio representations are not evaluated on a broad range of audio problems, and as a re-
sult, it is difficult to know which audio representation to use for a novel audio learning
task.

The Holistic Evaluation of Audio Representations (HEAR) challenge was created to
encourage the development of flexible audio representations, to give greater insight into
how audio representations will generalize, and to enable fast development cycles both for
researchers developing new models and researchers applying existing models. HEAR par-
ticipants submitted audio representation models that are general-purpose, open-source, and
freely available to use off-the-shelf. All HEAR compatible models follow a common API,
which makes switching between models as simple as changing one line of code.

The HEAR benchmark includes nineteen tasks: five open tasks derived from three
datasets for which the problem definition and evaluation data were available to partici-
pants, and 14 additional secret tasks for evaluation, to which participants were completely
blind throughout the challenge. While most of the tasks (open or secret) have good or
promising solutions when worked on in isolation, the novelty of this challenge is that the
same representation must be used to solve all of them. These tasks encompass multiple
audio domains: speech, environmental sound, and music, with tasks that involve short and
long time spans. HEAR datasets are easy to use: all are preprocessed to a common format
with standard splits and self-explanatory human-readable metadata, and are distributed as
tarfiles online.1 This alleviates the engineering effort required to work with datasets that
require YouTube scraping, have variably documented preprocessing requirements, or are
gatekept through closed-access request forms. Researchers are also welcome to use HEAR
datasets under entirely open licenses (many of which allow commercial use), without using
our downstream evaluation code.

Evaluation consists of classification tasks, both multiclass and multilabel, requiring ei-
ther prediction over the entire audio scene (clip), or temporal-based onset detection of
sound event (Mesaros et al., 2016). HEAR-compatible models can generate an embedding
of arbitrary size, which is fed into a simple generic predictor by our open-source eval-
uation algorithm. Evaluation code, submitted models, and datasets are all available at
https://neuralaudio.ai/hear.html.

1. https://zenodo.org/record/5885750
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2. Background on representation learning

At a high level, a learned representation (embedding) consists of a machine learning model
that takes a low-level representation of the input and outputs a numerical representation,
typically a fixed-size vector, that lends itself well to discriminative tasks (e.g., by training
a simple MLP on these embeddings). A good representation should (1) transfer to a wide
range of different tasks and (2) transfer with limited supervision (Goyal et al., 2019, 2022).

In the following paragraphs, we describe trends from the natural language processing
(NLP) and vision literature on representation learning, some of which have been applied
to audio. Vision work is particularly relevant (Amiriparian et al., 2017), as 2-D transfor-
mations of audio, such as the widely used log-Mel spectrogram (Davis and Mermelstein,
1980), lend themselves well to methods designed to process 2-D input data. For this rea-
son, a common thread in the literature on audio representations is that vision models are
applied to 2-D audio representations. With that said, many of the insights from text-based
language modeling, such as autoregressive neural modeling (Bengio et al., 2001), predict-
ing tokens masking as an unsupervised pretext task (Collobert et al., 2011), and bidirec-
tional transformers (Devlin et al., 2019), have found their way into the audio literature,
e.g., WaveNet (van den Oord et al., 2016), wav2vec (Schneider et al., 2019), and HuBERT
(Hsu et al., 2021), respectively. Textless NLP like Generative Spoken Language Modeling
(GSLM, Lakhotia et al. (2021)), applies an NLP lens to spoken audio instead of written
text.

Inducing representations The shallowest representation for audio is the raw digital
audio signal itself. However, its extremely high dimensionality means it is rarely useful for
discriminative tasks without additional processing, whether via manually crafted DSP en-
gineering or transformations learned by training a neural network (Trigeorgis et al., 2016).
Better representations might be obtained by applying a hand-crafted transformation based
upon domain-expertise, such as the log-scaled Mel spectrogram (Davis and Mermelstein,
1980), Mel Frequency Cepstral Coefficients (MFCC, Logan (2000)), constant Q-transform
(Schörkhuber and Klapuri, 2010), or scattering transform (Andén and Mallat, 2014). Au-
dio filterbanks can also be learned (Zeghidour et al., 2021). Deep ML architectures can
extract even more abstract, high-level representations (Aytar et al., 2016; Hershey et al.,
2017; Cramer et al., 2019). Purely randomly weighted architectures impose particular in-
ductive biases on data and can do better than hand-crafted baselines (Saxe et al., 2011;
Pons and Serra, 2019). However, it is more common to train these architectures.

Architectures The architecture of the model typically includes an encoder to transform
the input, and can optionally also include temporal modelling to capture context, and/or
a generative decoder. A common encoder architecture uses Convolutional Neural Net-
works (CNN) applied to a 2-D input (Hershey et al., 2017; Cramer et al., 2019), or directly
to the 1-D audio signal (van den Oord et al., 2016; Baevski et al., 2020). Temporal con-
text modelling is often achieved via Recurrent Neural Networks (RNN) (Merhi et al., 2017;
Kalchbrenner et al., 2018), or Transformers (Baevski et al., 2020). The latter, in particu-
lar, have achieved strong results for audio classification (Gong et al., 2021a), though they
are costly to train from scratch. Koutini et al. (2021) (§4) demonstrate a faster training
approach for audio transformer, which requires two GPU-days to pretrain on AudioSet. In
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reaction to the use of transformers, all-MLP architectures have demonstrated competitive
results on language and vision tasks (Liu et al., 2021; Tolstikhin et al., 2021).

Training regimes Models can be trained on a (large-scale) supervised task, such as
ImageNet (Deng et al., 2009) for vision and AudioSet (Gemmeke et al., 2017) for audio.
Multitask supervised training can further improve generalization (Pascual et al., 2019).

To avoid the need for human-labeling, self-supervised models (a form of unsupervised
learning) learn from large-scale unlabeled corpora. Many self-supervised approaches learn
to correspond the original input with a different view on that same input, such as a se-
mantically identical augmentation (Chen et al., 2020b; Tian et al., 2020). To avoid col-
lapsed solutions, self-supervised approaches historically used negative samples with a triplet
loss (Chopra et al., 2005), possibly requiring large negative batches (Chen et al., 2020b;
Saeed et al., 2021), which can be expensive to train. Alternatives include quantization ap-
proaches to define uniform clusterings of representations (Baevski et al., 2020), or carefully
implemented asymmetric training architectures like BYOL (Grill et al., 2020; Niizumi et al.,
2021) and SimSiam (Chen and He, 2021). More recent are self-supervised approaches that
avoid these aforementioned techniques, relying instead upon explicit and fundamental pri-
ors (Zbontar et al., 2021; Bardes et al., 2022). Input augmentations can be used to increase
the size of training data or provide corresponding views on the input (Salamon and Bello,
2017). Fonseca et al. (2021b) and Wang and van den Oord (2021) discuss augmentations,
including audio mixing, which Gong et al. (2021b); Wang et al. (2021b) explore in greater
depth and argue is useful both for supervised and unsupervised regimes.

Multi-modal approaches learn the correspondence between different modalities of the
input. Different modalities can accelerate compact learning in a single target modality by
exploiting cross-modality structure. OpenL3 (§4, Cramer et al. (2019)) is a broad-domain
audio model trained on the correspondence between audio and video. Contrastive Language-
Image Pre-training (CLIP, Radford et al. (2021)) learns a model from 400M image-text
pairs, and was successully applied on zero-shot tasks. Wang and van den Oord (2021) con-
trastively induce audio representations from waveforms (1-D audio) and spectrograms, and
Wang et al. (2021b) extend that to include correspondence with video frames.

Because pretraining large-scale models requires large quantities of data and can be com-
putationally expensive, another research direction has been on distilling information from
existing models that were trained on another modality for which more data are available.
Aytar et al. (2016) train SoundNET which distills audio representations from a pre-trained
image classification model trained on large image datasets such as ImageNet (Deng et al.,
2009). Wu et al. (2022a) (§4) distill an audio representation (Wav2CLIP) from a large
text-image model (CLIP) using video data to link the visual and audio modalities.

Using and evaluating representations Representation models can be used in down-
stream tasks with full fine-tuning; but the näıve approach is simply to treat interme-
diate pre-trained model outputs as frozen embeddings, and this nonetheless provides a
stark improvement over using raw features (Turian et al., 2010). Broad-scale evaluation
of learned representations has been done in other ML domains, in NLP, for example:
GLUE (Wang et al., 2019b), the harder SuperGLUE (Wang et al., 2019a), and ERASER
(DeYoung et al., 2020). Vision includes the FAIR self-supervision benchmark (Goyal et al.,
2019) and VTAB (Zhai et al., 2019).

4
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3. HEAR: Holistic Evaluation of Audio Representations

A strong general-purpose audio representation should be as holistic as the human ear.
The goal of the HEAR competition is to evaluate audio representations across a variety of
everyday domains, audio phenomena, with tasks that involve short and long time spans,
sometimes with few labeled instances. Formal rules are provided on the HEAR website.2

3.1. Related audio shared tasks

Historical audio shared tasks, such as those from MIREX (Downie et al., 2014), DCASE
(Mesaros et al., 2017), and INTERSPEECHComParE (Schuller et al., 2013) have improved
the community’s understanding of audio modeling substantially. However, the bespoke
nature of these tasks is a double-edged sword, requiring substantial custom tooling both
by the challenge organizers and participants. More recent audio shared tasks focus on
reusability and generic task APIs. SUPERB (Yang et al., 2021) focuses on a broad spectrum
of speech tasks, and includes downstream evaluation ranging from simple classification
to LSTM-based sequence modeling. Although the Speech Commands v2 task is shared
with HEAR, the other downstream tasks in SUPERB mainly deal with speech processing
applications, including speech recognition, speaker verification, keyword spotting, etc., and
these two evaluation activities are complementary to each other. The NOn-Semantic Speech
Benchmark (NOSS, Shor et al. (2020)) comprises 6 paralinguistic tasks. Two tasks are
shared with HEAR: CREMA-D and Speech Commands v2. Unfortunately, SAVEE and
DementiaBank require filling out a request form, and VoxCeleb requires scraping YouTube.
HARES (Holistic Audio Representation Evaluation Suite)—not to be confused with our
HEAR challenge—is concurrently published work (Wang et al., 2021c). HARES comprises
12 well-known downstream tasks including—like HEAR—ESC-50, Speech Commands v2,
and an NSynth Pitch task, benchmarked on 13 models. Where HARES differs from HEAR
includes: a) HARES tasks are well-known benchmarks, whereas HEAR is a mix of well-
known and novel benchmarks, b) HARES includes no few-shot tasks, all tasks have ≥ 2K
samples, c) HARES results currently include no external submissions, d) evaluation code
and dataset links are not provided and e) two of the tasks (AudioSet and VoxCeleb) tasks
involve scraping YouTube. Datasets based upon YouTube require specialized code and
lack reproducibility because videos are removed unpredictably (Cramer et al., 2019). These
generic audio evaluation suites, including our HEAR challenge, intend to make it easy to
evaluate existing models on novel tasks, at the expense of possible SOTA performance.

3.2. Evaluation methodology

Wrapping existing models into the HEAR API requires roughly 75 lines of code, much of
which is boilerplate. New HEAR tasks can be run with no code changes. HEAR 2021
includes two types of tasks: 1) Scene-based: Multi-class or multi-label classification of an
entire audio clip; 2) Timestamp-based: Sound event detection/transcription, which involves
detecting when exactly sound events occur over time by providing a start time, end time,
and label for each sound event. In both cases, the audio representation is frozen and used
as the input feature vector to a shallow downstream MLP classifier, with no fine-tuning.

2. https://neuralaudio.ai/hear2021-rules.html
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Fine-tuning improves downstream performance (Baevski et al. (2020); Shor et al. (2020)),
but increases training time. Crucially, the use of frozen embedings means that HEAR
downstream evaluation code can be maintained solely in PyTorch, regardless of whether
the embedding model was in TensorFlow or PyTorch.3

A timestamp-based task can be simplified to a frame-based sequence-labeling task of
the audio at regular intervals (Kelz et al., 2016), and we use a common postprocessing
step to compose predictions from multiple timesteps and extract discrete labeled events
with start and ends times (Mesaros et al., 2016). Framewise accuracy (the decomposed
multilabel prediction, computed at regular timesteps) does not always correlate well with
the perceptual quality of event-onset FMS (Hawthorne et al., 2018) because they ignore the
interplay between the frame representations and more sophisticated downstream inference
(Cheuk et al., 2021). See Section B for details on the downstream training regime.

3.3. Evaluation tasks

The following are the evaluation tasks for HEAR 2021. For simplicity and reproducibility, we
have preprocessed each relevant datasets to all commonly used sample rates (16000, 22050,
32000, 44100), fixed the length of the audio clips, predefined training splits, and packaged
each dataset in a self-explanatory common format with human-readable metadata. They
all have open licenses (some of which permit commercial use), with the exception of the
GTZAN corpora which are widely used but of unknown license status. We encourage the
community to use our datasets, even if they do not follow all or any the HEAR 2021 rules,
but encourage deviations from the HEAR 2021 rules to be described.

Open tasks were released early in the challenge, to encourage participation and to al-
low participants to debug and refine their submissions: Speech Commands v2 (full and
5h versions), NSynth Pitch (50h and 5h versions), and DCASE 2016 Task 2. Tasks are
summarized in Table 1 described with more detail in Table 2 and Section A.

4. Models evaluated

Evaluated models are described below. Table 3 summarizes model properties. HEAR began
with three strong baseline models (§4.1), each pretrained on a different audio domain. We
report on 13 external teams’ submissions to HEAR 2021 (§4.2).

4.1. Baseline models

wav2vec2 wav2vec2 (1-D CNN and positional transformer) (Baevski et al., 2020). Self-
supervised pretraining on 100K hours of speech from VoxPopuli (Wang et al., 2021a).

CREPE 1-D CNN. Supervised pretraining of pitch-tracking on 16 hours of synthesized
music. (Kim et al., 2018b)

3. We initially believed that imposing a restriction that all submitted models must be TensorFlow 2.x
or PyTorch and pip3-installable would facilitate easy orchestration of model testing. However, models
submitted with competing TensorFlow, CUDA, CuDNN, and pypi dependencies lead us to suggest that
future ML challenge organizers standardize on the latest stable microversion of all deep learning packages.
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Table 1: HEAR tasks.

Speech Commands (version 2), 5h and full Spoken commands classification.
NSynth Pitch, 5h and 50h Pitch classification of synthesized sounds.
DCASE 2016 Task 2 Office sound event detection in synthesized scenes.
Beehive States Binary classification of normal vs. queen-less beehives.
Beijing Opera Percussion Classification of six Beijing Opera percussion instruments.
CREMA-D Speech emotion recognition.
ESC-50 Environmental sound classification.
FSD50K Broad-domain audio multi-labeling.
Gunshot Triangulation Identify location of microphone recording a gunshot, using
classification.
GTZAN Genre Music genre classification.
GTZAN Music Speech Classification of audio into music or speech.
LibriCount Multiclass speaker count identification.
MAESTRO 5h Music transcription.
Mridingham Stroke and Mridingham Tonic Non-Western pitched percussion.
Classification of stroke or tonic.
Vocal Imitations Match a vocal imitation to the type of sound imitated, using
classification.
VoxLingua107 Top 10 Spoken language identification.

OpenL3 2-D CNN. Multi-modal contrastive self-supervised pretraining of audio/video
correspondence on 6K hours of AudioSet broad-domain YouTube content. (Cramer et al.
(2019), earlier Arandjelovic and Zisserman (2017)) HEAR implementation by Jon Nordby.

4.2. Submitted models

AMAAI Lab SUTD wav2vec2+DDSP An ensemble of wav2vec2 (Baevski et al.,
2020) and two DDSP encoders (Engel et al., 2020). The wav2vec2 model is pretrained on
the Librispeech (Panayotov et al., 2015) and MAESTRO (Hawthorne et al., 2019) datasets.
One DDSP encoder is CREPE, the other is a non-pretrained loudness encoder.

AMAAI wav2vec2 music+speech wav2vec2 model (Baevski et al., 2020). Pretrained
on Librispeech (Panayotov et al., 2015) and MAESTRO (Hawthorne et al., 2019).

Audioshake UDONS ViT Vision transformer (ViT, Kolesnikov et al. (2021)). Pre-
trained on 360h of Librispeech to predict the correct permutation (Noroozi and Favaro,
2016; Carr et al., 2021) of up to 5 patches of mel-spectrogram input, shuffled in time.

CP-JKU PaSST base, base2level, base2levelmel Patchout fast (2-D) spectrogram
transformer (PaSST, Koutini et al. (2021)). Initialized from a ImageNet vision transformer
model, and further pretrained on 10s audio from AudioSet to perform supervised tagging.
base2level concatenates a longer window (160 ms and 800ms) for timestamp embeddings.
base2levelmel additionally concatenates the raw melspectrogram as well.

7
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CVSSP (University of Surrey) PANNs 2-D CNN14. Pretrained on AudioSet with
supervision (Kong et al., 2020).

Descript/MARL Wav2CLIP 2-D ResNet18. Pretrained multimodally using contrastive
learning on the 600h VGGSound corpus (Chen et al., 2020a) (without supervised labels) to
distill the Contrastive Language-Image Pre-training (CLIP, Radford et al. (2021)) language
and image model to a corresponding audio embedding (Wu et al., 2022a).

IUT-CSE kwmlp and audiomlp Sequentially stacked gated MLP model (Liu et al.,
2021), taking (2-D) MFFCs as input. kwmlp (Morshed et al., 2022) is pretrained with
supervision on Speech Commands v2. audiomlp is pretrained with supervision on HEAR
open task datasets: Speech Commands v2, DCASE 2016 Task 2, and NSynth Pitch.

Kuroyanagi hearline 2-D conformer model. Pretraining unknown.

Logitech AI SERAB BYOL-S 2-D CNN. Self-supervised pretraining using the BYOL
self-supervised approach (Grill et al., 2020) adapted to audio (BYOL-A, Niizumi et al.
(2021)), pretrained on the speech subset of AudioSet (Elbanna et al., 2022).

NTU-GURA (fusion) avg/cat hubert/wav2vec2/crepe Three models (HuBERT
Hsu et al. (2021), wav2vec2, CREPE) combined in a variety of ways: averaged or con-
catenated (Wu et al., 2022b). Fusion of multiple model layers was optionally included.
fusion cat xwc time is a variation of fusion cat xwc with a different approach to matching
timestamps when concatenating different models’ emmbeddings.

RedRice/Xiaomi EfficientNet-B2 2-D EfficientNet-B2 (Tan and Le, 2019). Pretrained
on supervised AudioSet tags. Instead of global averaging pooling, decision-level pooling is
used. Timestamp embeddings are smeared scene embeddings.

Soundsensing YAMNet 2-D MobileNet (Howard et al., 2017). Pretrained to tag Au-
dioSet.

Stellenbosch LSL Audio DBERT 1-D CNN encoder and modified BERT transformer.
Pretrained as the discriminator with a GAN objective, using the clustering model as the
generator, on 960 hours of Librispeech (Panayotov et al., 2015). Embeddings are taken
from layer 16 of 24 by default.

5. Results and Discussion

In Figure 1 we present the primary score of submitted models on each HEAR 2021 task.
By default, evaluation uses a deterministic seed, for reproducibility. Nonetheless, scores
are stable across our evaluation, with a median 95% confidence interval of 2.5e-3 when
seeding of model weights and hyperparameter grid points is selected non-determinisically.
Shor et al. (2020); Wu et al. (2022a) present scores for some of the the same models and
tasks. HEAR reported scores are similar but not identical, due to downstream training
differences.

To display model similarity at a glance, we present t-SNE visualizations of normalized
scores by task (Figure 2(a)) and by model (Figure 2(b)). We also show correlation tables for
tasks (Figure 3) and models (Figure 4) to give greater insight into model and task similarity,
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in similar spirit to the confusion matrices of Wu et al. (2022a). Zhai et al. (2019) compare
a variety of aggregation techniques for evaluating cross-task model performance, and find
that they are all highly correlated, settling upon simple mean top-1. Gosiewska et al. (2020)
proposes an ELO-like meta-score for cross-task model performance, similar to a chess rating.
Although it is tempting to give a single score for every model, we believe that would strip
out important nuances shown in the full score table (DeYoung et al., 2020).

For these summary figures, we normalize each model/task score. Normalized scores
allow us to compare models and tasks against each other, under the assumption each task
is equally weighted. The normalization procedure is as follows: 1) For each task, we stan-
dardize the scores to zero mean and unit variance. Unlike transforming tasks to ranks, we
assume that the scale of intra-task scores is important. 2) The standardized scores are Win-
sorized (clamped) to have variance within [-1, +1]. By limiting the importance of extremely
high or low scores on a single task, this approach allows for better inter-task comparison.

In the following paragraphs, we describe a few interesting patterns and trends in the
submitted models. Many evaluted models use the last layer as the representation. It is
known that non-final layers and/or fusing various layers might capture more information
(Shor et al., 2020; Baevski, 2020; Yang et al., 2021). Intermediate layers often model audio
phenomena that are not necessary for the final loss. NTU-GURA’s ablation studies support
that, as evidence by the relative performance of their different models. For conciseness, we
use the term “strong speech models” to refer to NTU-GURA’s fused models that include
pretrained speech models.

Pitch tasks NSynth pitch and Maestro tasks have similar results, and models that include
CREPE embeddings (Kim et al., 2018b) perform best. This makes sense as these tasks
require modeling of pitch, which CREPE was specifically trained for, while many other
representations focus on discriminating between semantic objects (e.g., cat vs dog or guitar
vs piano) but are pitch agnostic. Interestingly, models trained for semantic discrimination
(e.g., via AudioSet) and speech models do nonetheless represent pitch to some degree, as
evidenced by the decent performance of OpenL3 and wav2vec2 on these tasks.

Broad Domain Semantic-Object Tagging FSD50K and ESC-50 semantic-object tag-
ging results are strongly correlated, as well as—perhaps surprisingly—GTZAN genre tag-
ging. The models that perform the best on this group are the ones pretrained on the
AudioSet semantic-object tagging task. What we glean from this large-scale survey of di-
verse models is that results on ESC-50 and GTZAN genre tagging are strongly predictive
of results on the more nuanced FSD50K task, despite being an order of magnitude smaller
and not using the corrected GTZAN artist-conditional splits from (Sturm, 2013), suggest-
ing faster inroads for research iteration. One valuable point-based contribution of HEAR
2021 is that the CP-JKU PaSST base model achieves a new state-of-the-art on FSD50K
despite no fine-tuning, a mean average precision (mAP) of 0.640 on FSD50K, compared to
the recent literature (Gong et al., 2021b; Wu et al., 2022a; Fonseca et al., 2021a).

Vocals FSD50K scores are also similar to those of Vocal Imitations and LibriCount. This
is perhaps because Vocal Imitations comprises broad non-semantic vocalizations and Libri-
Count involves detecting multiple simultaneous audio events. The strong speech and PaSST
models do the best on Vocal Imitations. On LibriCount, SERAB BYOL-S does the best as
a non-semantic speech model, with decent performance from strong speech models.

9



Turian et al.

Be
eh

iv
e

Be
eh

iv
e

Be
ijin

g 
Op

er
a

Be
ijin

g 
Op

er
a

CR
EM

A-
D

CR
EM

A-
D

DC
AS

E 
20

16
DC

AS
E 
20

16

ES
C-
50

ES
C-
50

FS
D5

0k
FS
D5

0k

GT
ZA

N 
Ge

nr
e

GT
ZA

N 
Ge

nr
e

GT
ZA

N 
M
us
ic/
Sp

ee
ch

GT
ZA

N 
M
us
ic/
Sp

ee
ch

Gu
ns
ho

t
Gu

ns
ho

t

Lib
ric

ou
nt

Lib
ric

ou
nt

M
ae

st
ro
 5
h

M
ae

st
ro
 5
h

M
rid

an
ga

m
 S
tro

ke
M
rid

an
ga

m
 S
tro

ke

M
rid

an
ga

m
 To

ni
c

M
rid

an
ga

m
 To

ni
c

NS
yn

th
 P
itc

h 
50

h
NS

yn
th
 P
itc

h 
50

h

NS
yn

th
 P
itc

h 
5h

NS
yn

th
 P
itc

h 
5h

Sp
ee

ch
 c
om

m
an

ds
 5
h

Sp
ee

ch
 c
om

m
an

ds
 5
h

Sp
ee

ch
 c
om

m
an

ds
 fu

ll
Sp

ee
ch
 c
om

m
an

ds
 fu

ll

Vo
ca
l I
m
ita

tio
n

Vo
ca
l I
m
ita

tio
n

Vo
xL
in
gu

a1
07

 to
p 
10

Vo
xL
in
gu

a1
07

 to
p 
10

task

GURA Fuse Cat H+w+C

GURA Fuse Cat H+w+C (t)

GURA Fuse Hubert

GURA Fuse wav2vec2

Logitech SERAB BYOL-S

GURA Cat H+w+C

OpenL3

CP-JKU PaSST 2lvl+mel

CP-JKU PaSST 2lvl

CP-JKU PaSST base

GURA Hubert

GURA Avg H+w+C

GURA Cat Hubert+wav2vec2

wav2vec2

RedRice EfficientNet-B2

GURA Avg Hubert+CREPE

GURA Avg Hubert+wav2vec2

GURA Cat wav2vec2+CREPE

CVSSP PANNS

IUT-CSE MLP (keyword)

Stellenbosch LSL DBERT

Descript/MARL Wav2CLIP

Audioshake UDONS ViT

Soundsensing YAMNet

CREPE

Kuroyanagi hearline

AMAAI w2v2 music+spch

IUT-CSE MLP (audio)

AMAAI Lab w2v2+DDSP

m
od

el

.966 .747 .826 .734 .420 .805 .928 .935 .697 .441 .972 .923 .885 .846 .961 .968 .197 .720

.962 .743 .826 .653 .374 .760 .944 .905 .659 .441 .975 .924 .891 .854 .951 .968 .215 .629

.949 .752 .826 .743 .413 .796 .936 .929 .683 .166 .974 .909 .688 .382 .947 .957 .185 .714

.945 .692 .798 .695 .403 .793 .953 .967 .653 .111 .962 .838 .606 .330 .957 .969 .174 .706

.549 .953 .657 .642 .805 .509 .837 .938 .857 .785 .008 .973 .928 .712 .396 .914 .948 .160 .458

.936 .639 .681 .511 .314 .722 .961 .881 .639 .469 .938 .859 .897 .866 .927 .943 .111 .460

.604 .975 .550 .833 .751 .447 .879 .969 .949 .641 .017 .967 .937 .731 .560 .680 .763 .078 .331

.966 .610 .925 .947 .558 .883 .977 .940 .660 .965 .819 .541 .256 .681 .639 .182 .259

.966 .610 .913 .947 .537 .883 .977 .940 .660 .965 .819 .541 .256 .681 .639 .182 .259

.966 .610 .788 .947 .640 .883 .977 .940 .660 .965 .819 .541 .256 .681 .639 .182 .259

.945 .690 .584 .603 .314 .735 .913 .932 .646 .007 .953 .850 .429 .184 .953 .954 .154 .637

.945 .547 .624 .450 .264 .706 .937 .857 .631 .460 .914 .837 .896 .862 .822 .881 .084 .321

.936 .698 .452 .586 .323 .734 .936 .869 .627 .003 .951 .802 .428 .198 .936 .929 .166 .706

.907 .656 .663 .561 .116 .780 .946 .848 .692 .033 .943 .828 .653 .402 .838 .879 .080 .493

.533 .953 .575 .790 .935 .607 .878 .968 .878 .651 .000 .949 .843 .391 .168 .573 .676 .138 .255

.932 .540 .610 .437 .253 .698 .946 .845 .622 .462 .917 .831 .897 .878 .737 .823 .079 .293

.941 .699 .417 .587 .318 .746 .928 .810 .623 .004 .946 .799 .415 .198 .907 .952 .165 .690

.920 .460 .585 .343 .209 .681 .938 .833 .569 .463 .898 .823 .899 .868 .885 .919 .076 .310

.446 .911 .555 .000 .909 .860 .992 .798 .652 .000 .939 .824 .301 .148 .560 .618 .127 .244

.760 .911 .424 .518 .367 .187 .554 .889 .932 .451 .065 .969 .942 .605 .440 .976 .978 .056 .181

.697 .919 .522 .246 .532 .263 .674 .969 .810 .584 .000 .835 .685 .737 .524 .566 .630 .161 .246

.770 .936 .512 .000 .759 .362 .748 .946 .929 .528 .000 .947 .829 .439 .230 .316 .347 .083 .192

.878 .928 .441 .668 .401 .681 .899 .866 .488 .239 .880 .730 .795 .692 .479 .531 .068 .224

.466 .941 .453 .008 .838 .847 .969 .732 .653 .000 .321 .158 .289 .410 .085 .202

.593 .928 .383 .504 .300 .159 .645 .929 .863 .499 .401 .898 .824 .900 .870 .180 .211 .051 .142

.928 .480 .424 .178 .654 .931 .518 .498 .002 .909 .783 .589 .394 .478 .580 .040 .180

.826 .391 .510 .511 .198 .605 .907 .857 .432 .003 .759 .415 .176 .182 .744 .523 .064 .169

.535 .728 .420 .052 .161 .086 .408 .774 .786 .366 .024 .893 .778 .608 .386 .392 .535 .038 .129

.635 .507 .280 .268 .583 .510 .000 .653 .357 .303 .172 .487 .490 .072 .106

Figure 1: Primary score of submitted models on each HEAR 2021 task. Normalized scores
are used to show the heat-value of each cell. Missing cells indicate that the model
did not successfully complete the task (exhausting GPU memory or exceeding 24
hours downstream training time).
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Speech As we move into the speech domain, LibriCount and Vocal Imitations have the
most similarity to CREMA-D emotion detection, which then is most similar to VoxLin-
gua107 Top 10 language identification, which in turn is correlated with Speech Commands,
following a trend from “environmental” to paralinguistic to semantic. The strong speech
models do the best on these tasks.

What is most interesting about our diverse survey of 29 models × 19 tasks is, perhaps,
the most difficult to explain results: tasks that defy neat categorization suggest the fragile,
unpredictable boundaries of existing models. DCASE 2016 Task 2 seems a priori similar
to FSD50K and ESC-50, but not in practice. Vocal Imitations are human-depictions of
all kinds of sounds. Gunshot Triangulation is an extremely low-resource task with only 88
instances. Beijing Opera and Mridingham Stroke and Tonic are non-Western music tasks.
For these tasks, our contribution is a negative result: we have no simple story or obvious
pretraining data to attack them. Robust generalization of >10-billion-parameter models
from NLP (Brown et al., 2020) and vision (Goyal et al., 2022) suggest one path forward.

6. Conclusion

General-purpose models that transfer to few-shot and zero-shot scenarios are highly de-
sirable. The audio community has followed the NLP and vision communities in using
increasingly sophisticated representation learning approaches. The HEAR challenge allows
the audio community also to follow the trend of broad-scale reproducible evaluation.

HEAR 2021 is about openness. The datasets and the submissions are as open as possible.
All HEAR 2021 datasets are preprocessed to a common format with standard splits, and
distributed as tarfiles. This alleviates the risk of dataset rot common in YouTube scraping,
and the difficulty of acquiring data locked behind closed-access request forms. All HEAR
2021 submissions have code that is Apache 2.0 compatible, models that are CC-Attribution
compatible, and follow a common API, so switching between them requires a single line
of code. Evaluation code, submitted models, and datasets are key contributions of HEAR
2021, available at https://neuralaudio.ai/hear.html.

Twenty-nine models were evaluated on 19 diverse downstream tasks, spanning speech,
environmental sounds, and music, and datasets that don’t fit neatly into any rubric, as well
as datasets that span the boundaries of multiple audio domains. This large standardized set
of tasks and models pave the way for comprehensive and reproducible evaluation, enabling
previously impossible longitudinal studies. We are eager to help onboard new tasks into
the HEAR benchmark suite, particularly unusual and/or few-shot audio tasks. The largest-
scale HEAR scene-embedding tasks and the CPU-gated evaluation of timestamp-embedding
tasks were the most difficult tasks to run, sometimes requiring 24 hours for downstream
eavluation of a single model-task pair on an A100 GPU, despite no fine-tuning.

Before an evaluation like HEAR, it would be easy for the community to suggest which au-
dio tasks are predictably hard: large-scale, well-defined datasets with no more low-hanging
fruit that are known to be difficult to hill-climb. Our contribution—the existence and easy
accessibility of HEAR datasets, models, and evaluation code—allows the community to
probe what we don’t know. And the central question posed by HEAR 2021 remains open:
Can one single general-purpose audio representation perform as holistically as the human
ear? If one does, then there is clearly more work to be done towards achieving it.
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Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12:2493–2537, 2011.

Seth Cooper and Steven Shaw. Gunshots recorded in an open field using iPod Touch devices,
2020. URL https://doi.org/10.5061/dryad.wm37pvmkc.

Jason Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello. Look, Listen, and
Learn More: Design Choices for Deep Audio Embeddings. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 3852–3856, 2019.

Steven Davis and Paul Mermelstein. Comparison of parametric representations for monosyl-
labic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(4):357–366, 1980.

13

https://doi.org/10.5061/dryad.wm37pvmkc


Turian et al.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-
scale hierarchical image database. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (NAACL-HLT),
pages 4171–4186, 2019.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard
Socher, and Byron C Wallace. ERASER: A Benchmark to Evaluate Rationalized NLP
Models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors,
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
(ACL), pages 4443–4458, 2020.

J Stephen Downie, Xiao Hu, Jin Ha Lee, Kahyun Choi, Sally Jo Cunningham, and Yun
Hao. Ten years of MIREX: reflections, challenges and opportunities. In Proceedings of the
15th International Society for Music Information Retrieval Conference (ISMIR), pages
657–662. ISMIR, 2014.

Gasser Elbanna, Neil Scheidwasser-Clow, Mikolaj Kegler, Pierre Beckmann, and Milos Cer-
nak. Byol-s: Learning self-supervised speech representations by bootstrapping. In Joseph
Turian, Björn W. Schuller, Dorien Herremans, Katrin Kirchhoff, Paola Garcia Perera,
and Philippe Esling, editors, Proceedings of HEAR 2021: Holistic Evaluation of Audio
Representations, volume 166 of Proceedings of Machine Learning Research. PMLR, 2022.
In submission.

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts. DDSP: Differ-
entiable Digital Signal Processing. In Proceedings of the 8th International Conference on
Learning Representations (ICLR), 2020.

Jesse H. Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi,
Douglas Eck, and Karen Simonyan. Neural Audio Synthesis of Musical Notes with
WaveNet Autoencoders. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning (ICML), volume 70 of Proceed-
ings of Machine Learning Research, pages 1068–1077, 2017.

Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. FSD50K:
an Open Dataset of Human-Labeled Sound Events. CoRR arXiv, 2020. URL
http://arxiv.org/abs/2010.00475.

Eduardo Fonseca, Andres Ferraro, and Xavier Serra. Improving sound event classification
by increasing shift invariance in convolutional neural networks. CoRR arXiv, 2021a. URL
https://arxiv.org/abs/2107.00623.

Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E O’Connor, and Xavier Serra.
Unsupervised contrastive learning of sound event representations. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 371–375, 2021b.

14

http://arxiv.org/abs/2010.00475
https://arxiv.org/abs/2107.00623


HEAR 2021: Holistic Evaluation of Audio Representations

Jort F Gemmeke, Daniel P W Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio Set: An ontology and
human-labeled dataset for audio events. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 776–780, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 9 of Proceedings of Machine Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy, 2010. PMLR.

Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In
Proceedings of the 22nd Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2021a.

Yuan Gong, Yu-An Chung, and James Glass. PSLA: Improving Audio Tagging With Pre-
training, Sampling, Labeling, and Aggregation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3292–3306, 2021b.

Alicja Gosiewska, Katarzyna Woznica, and Przemyslaw Biecek. Interpretable Meta-Measure
for Model Performance. CoRR arXiv, 2020. URL http://arxiv.org/abs/2006.02293.

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and Benchmark-
ing Self-Supervised Visual Representation Learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 6390–6399, 2019. URL
https://github.com/facebookresearch/.

Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Ishan Misra, Levent Sa-
gun, Armand Joulin, and Piotr Bojanowski. Vision models are more robust and fair
when pretrained on uncurated images without supervision. CoRR arXiv, 2022. URL
https://arxiv.org/abs/2202.08360.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
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Jörgen Valk and Tanel Alumäe. VOXLINGUA107: A Dataset for Spoken Language Recog-
nition. In IEEE Spoken Language Technology Workshop (SLT), pages 652–658, 2021.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Gener-
ative Model for Raw Audio. In Proceedings of the 9th ISCA Speech Synthesis Workshop,
page 125, 2016.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. SuperGLUE: A stickier benchmark for general-
purpose language understanding systems. In Hanna M. Wallach, Hugo Larochelle, Alina
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Table 2: Summary of the 19 evaluation tasks for HEAR 2021. Includes the embedding type
(timestamp (T) or scene (S)), the predictor type (multiclass (C) or multilabel
(L)), the split method used during downstream evaluation (train/validation/test
(TVT) or K-fold), the duration of clips in seconds, the total number of clips for
each task, the primary evaluation metric, and whether or not the task is novel.
Novel tasks are not comparable to the literature. For all tasks except FSD50k,
clips were standardized to one length using padding or trimming, typically the
95th percentile length in the original corpus.

Task Name Embed Predictor Split Duration # clips Evaluation Novel

Type Type Method (seconds) Metric

Open Tasks

DCASE 2016 Task 2 T L TVT 120.0 72 Onset FMS X

NSynth Pitch 5hr S C TVT 4.0 5000 Pitch Acc. X

NSynth Pitch 50hr S C TVT 4.0 49060 Pitch Acc. X

Speech Commands 5hr S C TVT 1.0 22890 Accuracy X

Speech Commands Full S C TVT 1.0 100503 Accuracy

Secret Tasks

Beehive States S C TVT 600.0 576 AUCROC
Beijing Opera Percussion S C 5-fold 4.77 236 Accuracy X

CREMA-D S C 5-fold 5.0 7438 Accuracy
ESC-50 S C 5-fold 5.0 2000 Accuracy
FSD50K S L TVT 0.3 - 30.0 51185 mAP
Gunshot Triangulation S C 7-fold 1.5 88 Accuracy X

GTZAN Genre S C 10-fold 30.0 1000 Accuracy
GTZAN Music Speech S C 10-fold 30.0 128 Accuracy
LibriCount S C 5-fold 5.0 5720 Accuracy
MAESTRO 5hr T L 5-fold 120.0 185 Onset FMS X

Mridangam Stroke S C 5-fold 0.81 6977 Accuracy X

Mridangam Tonic S C 5-fold 0.81 6977 Accuracy X

Vocal Imitations S C 3-fold 11.26 5601 mAP X

VoxLingua107 Top10 S C 5-fold 18.64 972 Accuracy X

Appendix A. Evaluation Tasks

Our 19 tasks were derived from 16 datasets, as described in more detail below. Tasks
described as “novel” are not comparable to the literature. A summary of task statistics is
available in Table 2.

Speech Commands (version 2), 5h and full Classification of known spoken com-
mands, with additional categories for silence and unknown commands (Warden, 2018). As
per the literature, models are evaluated by prediction accuracy. For this challenge we also
provide a 5-hour subset of the training data. We use the predefined train and test split,
and note that the test data has a different distribution of labels from the training data.

NSynth Pitch, 5h and 50h NSynth Pitch is a novel multiclass classification prob-
lem. The goal of this task is to classify instrumental sounds from the NSynth Dataset
(Engel et al., 2017) into one of 88 pitches. Results for this task are measured by pitch
accuracy, as well as chroma accuracy. Chroma accuracy considers only the pitch “class”
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i.e., pitches that are a multiple-of-octaves apart are considered equivalent. For HEAR 2021
we created two versions of this dataset: a 5 hour and 50 hour version. Unlike Carr et al.
(2021), we treat this as a classification, not regression problem.

DCASE 2016 Task 2 A novel office sound event detection in synthesized scenes, adapted
from DCASE 2016 Task 2 (Mesaros et al., 2018). Novel, insofar as our evaluation uses
different splits. The original imbalanced splits did not work well our generic cross-validation.

Postprocessing: Predictions were postprocessed using 250 ms median filtering. At each
validation step, a minimum event duration of 125 or 250ms was chosen to maximize onset-
only event-based F-measure (with 200ms tolerance). Scores were computed using sed eval

(Mesaros et al., 2016).

Beehive States This is a binary classification task using audio recordings of two beehives
(Nolasco et al., 2019). The beehives are in one of two states: a normal state, and one in
which the queen bee is missing (“queen-less”). At 10 minutes long, this task has the longest
audio clips in HEAR.

Beijing Opera Percussion This is a novel audio classification task developed using the
Beijing Opera Percussion Instrument Dataset (Tian et al., 2014). The Beijing Opera uses
six main percussion instruments that can be classified into four main categories: Bangu,
Naobo, Daluo, and Xiaoluo.

CREMA-D CREMA-D is a dataset for emotion recognition (Cao et al., 2014). The
original dataset contains audiovisual data of actors reciting sentences with one of six different
emotions (anger, disgust, fear, happy, neutral and sad). For HEAR 2021, we only use the
audio recordings (which differs from much but not all of the literature).

ESC-50 This is a multiclass classification task on environmental sounds. The ESC-50
dataset is a collection of 2000 environmental sounds organized into 50 classes (Piczak,
2015). Scores are averaged over 5 folds. (The folds are predefined in the original dataset.)

FSD50K FSD50K is a multilabel task (Fonseca et al., 2020). This dataset contains over
100 hours of human-labeled sound events from Freesound (https://freesound.org/).
Each of the ≈51 k audio clips is labeled using one or more of 200 classes from the Au-
dioSet Ontology, encompassing environmental sounds, speech, and music. Unlike the other
datasets, for FSD50K scene embeddings we did not alter the audio clip length. Each clip
is between 0.3 and 30 seconds long. We use the predefined train/val/eval split. Evaluation
is done using mean average precision (mAP).

Gunshot Triangulation Gunshot triangulation is a novel resource multiclass classifica-
tion task that utilizes a unique dataset: gunshots recorded in an open field using iPod Touch
devices (Cooper and Shaw, 2020). This data consist of 22 shots from 7 different firearms,
for a total of 88 audio clips, the smallest dataset in HEAR. Each shot is recorded using four
different iPod Touches, located at different distances from the shooter. The goal of this
task is to classify audio by the iPod Touch that recorded it, i.e., to identify the location of
the microphone. The dataset was split into 7 different folds, where each firearm belonged
to only one fold. Results are averaged over each fold.
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GTZAN Genre The GTZAN Genre Collection (Tzanetakis and Cook, 2002) is a dataset
of 1000 audio tracks (each 30 seconds in duration) that are categorized into ten genres (100
tracks per genre). The task is multiclass classification. As per the literature, scores are
averaged over 10 folds. However, we don’t used the corrected artist-conditional splits from
(Sturm, 2013).

GTZAN Music Speech GTZAN Music Speech is a binary classification task, where the
goal is to distinguish between music and speech. The dataset consists of 120 tracks (each
30 seconds in duration) and each class (music/speech) has 60 examples.

LibriCount LibriCount is a multiclass speaker count identification task (Stöter et al.,
2018b). The dataset contains audio of a simulated cocktail party environment with between
0 to 10 speakers. The goal of this task is to classify how many speakers are present in each
of the recordings. Following Stöter et al. (2018a), we treat this as a classification, not
regression, problem.

MAESTRO 5h This is a novel music transcription task adapted from MAESTRO. For
HEAR 2021, we created a subsampled version that includes 5 hours of training and valida-
tion audio, in 120 second clips. To evaluate submissions, a shallow transcription model was
trained on timestamp-based embeddings provided by the participant models.

We use note onset FMS and note onset with offset FMS for evaluation, as per the
original MAESTRO paper (Hawthorne et al., 2019) and the preceding Onsets and Frames
paper (Hawthorne et al., 2018).

Note onset measures the ability of the model to estimate note onsets with 50ms tolerance
and ignores offsets. Note onset w/ offset includes onsets as well as requires note duration
within 20% of ground truth or within 50ms, whichever is greater.

Mridingham Stroke and Mridingham Tonic We used the Mridangam Stroke Dataset
(Anantapadmanabhan et al., 2013) for two novel multiclass classification tasks: Stroke clas-
sification and Tonic classification. The Mridingam is a pitched percussion instrument used
in carnatic music, which is a sub-genre of Indian classical music. This dataset comprises 10
different strokes played on Mridingams with 6 different tonics.

Vocal Imitations Vocal Imitations (Kim et al., 2018a) is a novel multiclass classification
task, where the goal is to match a vocal imitation of a sound with the sound that is being
imitated. The dataset contains 5601 vocal imitations of 302 reference sounds, organized by
AudioSet ontology. Given a vocal sound, the classification task is to retrieve the original
audio it is imitating.

VoxLingua107 Top 10 This is a novel multiclass classification task derived from the
VoxLingua107 dataset (Valk and Alumäe, 2021). The goal of the task is to identify the
spoken language in an audio file. For HEAR 2021 we selected the top 10 most frequent
languages from the development set, which resulted in just over 5 hours of audio over 972
audio clips.
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Table 3: Properties of baseline and submitted models, including: whether the model pro-
cesses raw audio (1-D) or spectrograms (2D); on what kind of data the model
is pretrained; the number of million parameters; the size of the output embed-
ding for scene and timestamp tasks; and the number of minutes the model spends
embedding Speech Commands V2. We caution that embedding time is not the
entire picture, if participants did not do simple speed optimizations. For example,
the CREPE wrapper (also used by GURA) is known not to exploit GPU batch
parallelism.

Input Pretraining data # M Embed dim Time

Model 1D 2D speech broad music params scene time min

OpenL3 X X 4.7 512 512 94.9
wav2vec2 X X 315.4 1024 1024 8.9
CREPE X X 22.2 2048 2048 38.3

AMAAI Lab wav2vec2+DDSP X X X 98.8 871 871 43.6
AMAAI wav2vec2 music+speech X X X 300.0 768 768 5.0
Audioshake UDONS ViT X X 11.1 768 768 3.5
CP-JKU PaSST 2lvl X X 86.2 1295 2590 14.5
CP-JKU PaSST 2lvl+mel X X 86.2 1295 3358 5.8
CP-JKU PaSST base X X 86.2 1295 1295 5.8
CVSSP PANNS X X 80.8 2048 2048 3.9
Descript/MARL Wav2CLIP X X 11.7 512 512 3.1
GURA Avg H+w+C X X X 1339.0 1024 1024 40.0
GURA Avg Hubert+Crepe X X X 1022.0 1024 1024 33.9
GURA Avg Hubert+wav2vec2 X X 634.0 1024 1024 14.6
GURA Cat H+w+C X X X 1339.0 3072 3072 40.1
GURA Cat Hubert+wav2vec2 X X 634.0 2048 2048 14.4
GURA Cat wav2vec2+crepe X X X 339.0 2048 2048 24.7
GURA Fuse Cat H+w+C X X X 1339.0 3072 3072 40.1
GURA Fuse Cat H+w+C (time) X X X 1339.0 15360 3072 34.6
GURA Fuse Hubert X X 1000.0 1280 1280 18.1
GURA Fuse wav2vec2 X X 317.0 1024 1024 8.8
GURA Hubert X X 1000.0 1280 1280 17.9
IUT-CSE MLP (audio) X X X X 0.2 1584 8 2.9
IUT-CSE MLP (keyword) X X 0.4 1024 64 3.0
Logitech AI SERAB BYOL-S X X 5.3 2048 2048 4.8
RedRice EfficientNet-B2 X X 7.7 1408 1408 3.4
Soundsensing YAMNet X X 3.8 1024 1024 15.7
Stellenbosch LSL DBERT X X 316.8 2048 2048 6.5
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(b) Models

Figure 2: t-SNE visualizations of tasks and models, based upon normalized scores. Missing
normalized scores were imputed using sklearn’s multivariate IterativeImputer.
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Figure 3: Task versus task correlation scores, based upon normalized scores. Only the
highest and lowest correlations are displayed. Cells are sorted to minimize the
traveling salesperson distance, mapping correlations [-1, +1] to distances [+2, 0].
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Figure 4: Model versus model correlation scores, based upon normalized scores. Only the
highest and lowest correlations are displayed. Cells are sorted to minimize the
traveling salesperson distance, mapping correlations [-1, +1] to distances [+2, 0].
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Appendix B. Downstream training details

For each task, using a given model’s frozen embeddings as input features, we train a down-
stream MLP classifier. For scene-based multiclass tasks, the final layer is a softmax with
cross-entropy loss. For scene-based multilabel tasks and multilabel frame reductions of
timestamp tasks, the final layer is a sigmoid with cross-entropy loss.

We monitor the score (not loss) on the validation set. For timestamp tasks, computing
the validation score involves a full CPU-based sed eval (Mesaros et al., 2016) run with me-
dian filter of 250ms and minimum event duration 125ms and 250ms. (Both event durations
are tried at each validation step and the best hyperparameter is retained for that validation
step.) We train for a maximum of 500 epochs, checking the validation score every 3 epochs,
early stopping if no improvement is seen after 20 validation steps. For DCASE 2015 Task
2, we check the validation score every 10 epochs.

The validation score is used for early-stopping, as well as for model selection. The same
RNG seed is used for every model-task downstream training, ensuring that grid points and
weight initialization is identical. Model selection is performed over 8 deterministic random
grid points out of 16 possible grid points. Hyperparameters are shown in Table 4. This grid
was chosen after using a much larger hyperparameter grid with the three baseline models
on the open tasks. In these preliminary hyperparameter grid pruning experiments, the grid
was progressively refined by discarding hyperparemeter choices that were not predictive of
relatively high model performance, similarly to how Kelz et al. (2016) use tree ensemble
learning to prune their hyperparameter grid.

Table 4: Hyperparameters used for training.

Hidden layers [1, 2]
Hidden dimensions 1024

Dropout 0.1
Learning rate [3.2e-3, 1e-3, 3.2e-4, 1e-4]

Batch size 1024
Hidden norm Batch Norm
Initialization [Xavier Uniform, Xavier Normal] (Glorot and Bengio, 2010)

Optimizer Adam
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