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Abstract—The field of automatic music composition has seen
great progress in the last few years, much of which can be
attributed to advances in deep neural networks. There are numer-
ous studies that present different strategies for generating sheet
music from scratch. The inclusion of high-level musical character-
istics (e.g., perceived emotional qualities), however, as conditions
for controlling the generation output remains a challenge. In this
paper, we present a novel approach for calculating the valence
(the positivity or negativity of the perceived emotion) of a chord
progression within a lead sheet, using pre-defined mood tags
proposed by music experts. Based on this approach, we propose
a novel strategy for conditional lead sheet generation that allows
us to steer the music generation in terms of valence, phrasing,
and time signature. Our approach is similar to a Neural Machine
Translation (NMT) problem, as we include high-level conditions
in the encoder part of the sequence-to-sequence architectures
used (i.e., long-short term memory networks, and a Transformer
network). We conducted experiments to thoroughly analyze these
two architectures. The results show that the proposed strategy is
able to generate lead sheets in a controllable manner, resulting in
distributions of musical attributes similar to those of the training
dataset. We also verified through a subjective listening test that
our approach is effective in controlling the valence of a generated
chord progression.

Index Terms—Lead Sheet Generation, Emotion, Valence,
seq2seq, Transformer

I. INTRODUCTION

Developing computational music generation systems has
been the focus of research for many years [1]–[4]. With the
rapid development of deep generative models, their generation
results have become hard to distinguish from real-world data
in various applications. In the symbolic music generation
domain, diverse strategies have been used for a variety of
tasks [5]. Examples of music generation tasks are chorale
harmonisation [6], multi-track generation using piano-rolls [7],
[8] or lead sheets [9], and modifying a given piece of music
with style transfer [10].

This work is funded by Singapore Ministry of Education Grant no.
MOE2018-T2-2-161 and SRG ISTD 2017 129, as well as the RIE2020
Advanced Manufacturing and Engineering (AME) Programmatic Fund
(No.A20G8b0102), Singapore.

In this work, we focus on generating lead sheets from
scratch. A lead sheet is a form of musical notation that
represents the fundamental elements of popular songs such as
chords (using chord symbols), melody and sometimes lyrics.
There has been some previous research on this particular
task. De Boom et al. [11] proposed a two-stage generation
system based on long-short term memory networks (LSTMs)
to produce rhythm and chord events, for which a melody
sequence is generated in a second (conditioned) phase. Liu
& Yang [12] also introduced a two-stage generation system,
which generates the lead sheet first, after which a polyphonic
arrangement is produced as accompaniment using Generative
Adversarial Networks (GANs).

Recently, there have also been research to let the user
control the output of the generation by setting some con-
straints. These constraints are usually referred to as “high-
level” musical parameters and may be relatively subjective,
such as style and genre. Flow Composer [13] is an example
of a conditional generative system that combines two Markov
chains enriched by regular constraints, whereby the user sets
the desired style of the lead sheet by selecting a corpus
of existing lead sheets. [9] proposed an approach whereby
structured lead sheets are generated, based on a mechanism
(i.e., belief propagation) for efficiently sampling variations of
existing musical sequences. In this system, the user can control
certain parameters (e.g., similarity).

Extending this strategy of controlling the generation through
high-level constraints imposed by the user, our system allows
the user to control the emotion or valence of the generated
music. Emotions and music are intrinsically connected [14],
yet the qualities of the music that give rise to emotions are
difficult to capture [15]. In order to create a training dataset,
we first propose an approach for calculating the perceived
emotions of the music from existing chord progressions. This
allows us to label a training dataset of lead sheets with
emotions, which we can then leverage to train the proposed
conditional generative model.

Our approach for calculating emotions from chords is based
on [16]–[18] who indicate that the mode or type (e.g., major,
minor, seventh, etc.) of chords corresponds directly with the
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valence of the music. High-level musical qualities such as
emotions “suffer” from abstractness and subjectivity due to
the fact that they require human annotations. In this work,
however, instead of using human annotated labels, we filtered
mood tags that correspond to different types of chords and use
those to create a label for perceived emotions. The chosen tags
were based on annotations by music experts [19]. In Section
II we leverage this knowledge and propose a novel way of
annotating chords with valence. To the best of our knowledge,
there is no existing work that offers a method to manually
calculate the valence of a chord progression.

We use the calculated valence as a high-level conditioning
feature, along with others (e.g., time signature and grouping
indicators inspired by [20]), in our proposed generative lead
sheet system based on sequence-to-sequence architectures
(LSTM [21] and Transformer [22]). Another novel aspect of
our approach is a unique strategy to include the high-level user
conditions as the encoder input, whereas the musical events of
the lead sheet are predicted in the decoder. Thus, we approach
the task of lead sheet generation much like a Neural Machine
Translation (NMT) problem, except that we are translating
‘conditions’ into ‘musical events’.

The remainder of this paper is organised as follows: Sec-
tion II presents our proposed strategy for calculating the
valence of chord progression within a lead sheet. Next, Sec-
tion III shows the details of the proposed representation for
conditional lead sheet generation. Sections IV & V detail
the experimental setup and the evaluation of our approach,
followed by a conclusion in Section VI.

II. NOVEL WAY TO MEASURE VALENCE OF CHORDS

A chord is defined as a set of two or more simultaneously
played notes. A chord progression is a sequence of consecutive
chords and often refers to the harmony of a song. It is
considered to be a fundamental element of music that often
influences the emotions a listener perceives [16]. This point
becomes obvious when you listen to a new arrangement
of a song in which the melody remains the same but the
harmony is changed. The same piece can convey entirely
different emotions if the chord progression has changed [17].
[23] mention the importance of certain chord types inside
a progression for making the music sound “emotional”. In
addition, many studies show that major chords convey positive
emotion and minor chords convey negative emotion (e.g., [24],
[25]).

We will be representing the emotion of chords in terms
of valence. Valence relates to the positivity or negativity of
the emotion conveyed by a song and falls on a scale from
positive (+1) to negative (−1) [26]. For instance, anger, fear,
and sadness all have low (negative) valence. On the other
hand, emotions such as happy, content, and joyful correspond
to high (positive) valence. Given the fact that chord types
have a direct impact on the valence of a piece [16], [17],
we focus here on the effect that the chord progression of a
lead sheet has on perceived valence. It is worth noting that
‘arousal’ (which refers to the energy level conveyed by the

TABLE I
CHORD TYPES AND THEIR ASSOCIATED EMOTIONS, ADAPTED FROM [19].

Chord Type (example) Associated Emotions

Major (C)
Happiness, cheerfulness,
confidence, brightness,
satisfaction

Minor (Cm)
Sadness, darkness, sullenness,
apprehension, melancholy,
depression, mystery

Dominant Seventh (C7) Funkiness, soulfulness,
moderate edginess

Major Seventh (Cmaj7)
Romance, softness, jazziness,
serenity, tranquillity,
exhilaration

Minor Seventh (Cm7) Mellowness, moodiness,
jazziness

Dominant Ninth (C9) Openness, optimism

Diminished (Cdim) Fear, shock, spookiness,
suspense

Suspended Fourth (Csus4) Delightful tension

Seventh Minor Ninth (C7b9) Creepiness, ominousness, fear,
darkness

Added Ninth (Cadd9) Steeliness, austerity

song) [26] is excluded in this approach due to the absence of
tempo markings in our training dataset, given that arousal is
typically strongly affected by tempo [27].

To the best of our knowledge, there is only one dataset
in the symbolic domain that contains valence and arousal
annotations: the VGMIDI dataset [28]. This dataset contains
piano arrangements of 95 video game soundtracks in MIDI,
annotated with valence and arousal values in the range of −1
to +1. Although the annotations are continuous, per beat, the
input files are not close to the form of a lead sheet. There are
also many occasions where harmony (i.e., chord progression)
cannot be identified due to the unquantified nature of the midi
files.

Thus, we propose a new method to manually calculate
the valence of chords based on mood tags, as it is easier
to find datasets with annotated mood tags, versus annotated
valence and arousal. [19] found a relationship between modes
of chords and associated evoked emotions from professional
composers and musicians (see Table I). This list of chords with
associated emotions has already shown to be useful in related
research areas such us mood classification [29]. We leverage
these findings and consider the modes and types of chords
(major, minor, 7th, etc.) in our work, because this property
has arguably the greatest influence on perceived mood [23].

We then use a mapping from Paltoglou and Thelwall [30]
that matches Scherer’s [31] emotion tags with corresponding
valence and arousal values. This allow us to retrieve a valence
value for the emotion tags for each chord type from Table I.
A representation of this mapping is shown in Figure 1, where
the valence and arousal values are represented on the x-axis
and y-axis respectively (in the range of −1 to +1).

One issue we encountered when doing the mapping is that
not all of the emotion tags from Table I were included in
Scherer’s model. To address this, we proceeded with two
assumptions/modifications. First, the emotion tags that did not



Fig. 1. Scherer [31]’s mapping of mood tags to the two-dimensional circumplex space model proposed by Russell [26]. The corresponding valence (x-axis)
and arousal (y-axis) values are based on the coordinates provided by the mapping.

describe an “actual” emotion (e.g., jazziness) were removed.
Next, the remaining tags that were not present in Scherer [31]’s
model were matched as best as possible to synonyms that were
present, with the help of a Music Psychologist who is a native
English speaker. This resulted in a cleaned, reduced emotion
tag list per chord type.

Using this method, we can find valence values based on
chords by looking at the (cleaned) emotion tag list for each
chord. The final valence value is the median valence of all the
descriptive cleaned emotion tags. For instance, “Major” has
five associated emotions. “Cheerfulness” was matched with
“happiness” since they are synonyms, and “brightness” (which
was not in [31]’s model) was mapped to “delighted”. The
extracted Valence values from Figure 1 are 0.89, 0.89, 0.51,
0.87 and 0.77 respectively, resulting in a final valence value of
0.87. This value makes intuitive sense because a major chord
is often related to a positive mood.

III. PROPOSED FRAMEWORK

In this section we propose a novel architecture for a “con-
trollable”, affective music generation system using high-level
musical qualities imposed by the user. Because we consider the
task of lead sheet generation to be a NMT task, we make use
of popular sequence-to-sequence (seq2seq) architectures [21].
The user defines a sequence of musical attributes (conditions)
in the encoder stage, which is then “translated” to a complete
lead sheet in the decoder stage. Thus, we use two different
input representations for both stages that are inspired by the
event-based token representation from [32].

A. Encoder Representation - Controllable by the user
In our proposed approach, the Encoder takes a sequence

of high-level musical parameters (conditions) as input, which
allows the user to guide the generated music. The system
allows for a high level of control, as the user can set the
desired levels of the parameters for every bar. It is possible
to have either varying or constant values of these parameters
during generation. The following parameters are included:

• Chord Valence: During training, the valence for each
chord type is calculated from the training set as described
in Section II. To define the overall valence within a bar,
we calculate the median for each chord inside that bar.
Because valence ranges between -1 to 1, discretisation is
needed. We use five discrete labels (“Low”, “Moderate
Low”, “Neutral”, “Moderate High” and “High” respec-
tively) which are used to divide the valence range equally.
Thus, chord types with close valence values will get the
same descriptors.

• Time Signature: Symbols are used to describe the num-
ber of beats the “meter” of each bar of music [19]. Meter
refers to the recurring pattern of accents that provide the
pulse or beat of the music. Indicating and adjusting the
time signature has a direct affect on the rhythm of the
piece.

• Grouping Indicators: This feature contains extracted
annotations which mark structurally coherent temporal
regions of the music (i.e., different verses or refrains).
We have five distinct symbols: two indicating the first
two bars of a phrase, two for the last two bars and one
more descriptor for the rest bars. These indicators allow
the model to learn the initial and final events of a phrase,
an approach that has been successfully used in the task of
melodic harmonisation [33] and drums generation [20].

In addition to these high-level features, we implement a
“low-level” feature called event density which is calculated
as the number of events (either chord or melody) per bar.
Note density will allow the user to control the number of
generated events within a bar. The average number of events in
the dataset used in our experimental setup (see Section IV-A)
is 3.68 with a variance of 2.02 per bar. We use three discrete
labels: one for low, medium and high note density with ranges
of [0− 2], [3− 5], and [6+] events, respectively.

Given the above described conditional input, the Encoder
sequence can be defined as:



Fig. 2. Illustrated workflow of a lead sheet snippet transcribed to the proposed event representation for our encoder and decoder.

Encseq = (bar, h1, bar, h2, . . . , hn)

whereby the bar event declares the start of a new bar, and hi,
is a vector of length 4 that represents the proposed high-level
and low-level features for each bar i (with n being the total
number of bars):

hi = (TimeSigi, Groupingi, V alencei, Densityi)

B. Decoder Representation - Lead Sheet Output

The Decoder outputs the generated sequence of lead sheet
events per bar. This output can be formulated as follows:

Decseq = (bar, l1, bar, l2, . . . , ln)

whereby the bar event declares a new bar, and li represents
a series of lead sheet events (with n being the total number
of bars defined in the Encoder stage) for the corresponding
bar. Each lead sheet event consists of a chord symbol, melody
pitch, and duration token. These tokens share the same dictio-
nary that is built from the training dataset. The number of lead
sheet events is variable for each bar, and can be controlled by
the Densityi feature in the Encoder. Therefore this can be
formalised as:

li = (c1, m1, d1, c2, m2, d2, . . . , ce, me, de)

where c, m and d represent a chord triad, melody pitch,
and duration token respectively, with e indicating the gen-
erated number of events in the bar li. Figure 2 illustrates
an example of a lead snippet transcribed to the proposed
event representation for both Encoder and Decoder stages.
This proposed representation is designed to be compatible with
seq2seq architectures.

C. Model architectures

Our proposed Encoder-Decoder representation was designed
to work with state-of-the-art seq2seq architectures that have

been used successfully in the NMT field. We implemented
the following two architectures:

1) LSTM-based encoder-decoder: Inspired by [11], we
implemented a 3-layer Bidirectional LSTM (BiL-
STM) [34] Encoder, consisting of 512 hidden units
and a 3-layer Decoder of 1,024 hidden units with 30%
dropout between consecutive layers. The BiLSTM states
provided by the Encoder allow the lead sheet generator
(i.e., Decoder) to look back as well as ahead at the
sequence of music parameters defined by the user. It
is worth noting that adding local or global attention
mechanisms [35] to this network did not provide a better
performance during training or generation. This may
be due to the nature of the input representation of the
encoder which is a sequence that describes a specific bar,
whereas the decoder output is a list of multiple events
within bars. Therefore, the size of the decoder is much
larger than the encoder.

2) Transformer: We adapted the vanilla version of the
transformer architecture from [22] in our proposed sys-
tem. A total of 4 self-attention layers and 8 multi-head
attention modules were used. The number of hidden
units of the Feed-Forward layers was set to 1,536, with
20% dropout between consecutive layers.

D. Training and Generation

Due to the nature of our token-based encoding represen-
tation, we tackle the training and generation procedures with
“teacher-forcing”, a technique often used for NMT or text-
generation tasks. Thus, it is worth noting that both seq2seq
architectures have single outputs in the decoder stage, and
hence generate a single token in every iteration (inspired by the
encoding representations from [8], [32]) and not a triplet lead
sheet event as described in the previous section. Therefore, in
the decoder stage we have a single dictionary that includes all
the tokens for chords, melody pitches, and durations.

We use the Adam optimizer with a learning rate of 0.001,
and categorical cross-entropy as the loss function, for both



models. The batch size was set to 32 and the model was
implemented using Tensorflow 2.x [36]. In order to control
the diversity of the generation, we use a temperature τ (which
was varied uniformly randomly between 0.8 and 1.2) to sample
from the output distribution. Finally, in the generation stage,
the user can either define the parameters manually for every
bar, or randomly generate control parameter templates based
on the statistics of the test set. The code and pre-processed
dataset are available on GitHub1.

IV. EXPERIMENTAL SETUP

The goal of our proposed framework is to generate novel
lead sheets that allow the user to control features such as
valence at the bar-level. Our experiment focuses on the valence
of the generated chord progressions, an approach made viable
based on our unique strategy for chord valence calculation
(Section II) that allows us to create a lead sheet dataset with
labelled valence values. Therefore, we aim to evaluate:

1) Does the valence input by the user affect the perceived
valence of the generated music as intended?

2) How effective is our proposed encoder/decoder repre-
sentation and architecture to generate high quality, ‘real’
sounding music?

We address these research questions by both calculating an
extensive set of evaluation metrics as well as a listening test
described in Section IV-B2.

A. Data Collection and Pre-Processing

For our experiments, we use the Wikifonia dataset2. This
dataset contains 6,675 lead sheets in MusicXML format,
including diverse genres, from folk to popular music. After
filtering out corrupted files that do not contain chord symbols
or melody notation, we proceeded with the following pre-
processing steps:

• All of the songs were transposed to the key of C major or
A minor. Songs that contain key changes were split into
different independent instances. In addition, there was a
limit of up to 32 bars length for every song.

• Inspired by [11], we eliminated polyphonic melody parts
and ignored ties between notes from different bars.
Moreover, we unfolded repetitions since lead sheets can
contain repeated phrases. Therefore if a repeat barline
symbol occurs, we duplicate that particular phrase.

• We set restrictions on the available modes and chord
types. Table II shows the permitted chord types to allow
for our valence calculation method. Lead sheets including
other chord types were removed. In addition, we removed
inversions in the chord symbols.

• Multiple Time Signatures were detected in the original
dataset, however, we only considered lead sheets with
the 5 most common ones: 4/4, 3/4, 2/2, 2/4 and 6/8.

• We only included lead sheets with the most frequent
durations in the dataset, including triplets (of quarter

1https://github.com/melkor169/LeadSheetGen Valence
2Wikifonia archive is no more directly accessible from the web. You may

contact the authors if you are interested in obtaining the original dataset.

TABLE II
OCCURRENCES OF THE DIFFERENT CHORD MODES AND THEIR

ASSOCIATED VALENCE VALUES IN OUR DATASET.

Chord Type Valence Occurrences

Major 0.87 333,232
Minor -0.81 89,741
Dominant Seventh -0.02 173,586
Major Seventh 0.83 19,617
Minor Seventh -0.46 55,536
Dominant Ninth 0.51 12,944
Minor Ninth -0.15 9,557
Diminished -0.43 9,001

notes or eighth notes). Finally, for melodic pitch, the
permitted range was set from G3 (55) to C6 (84).

The resulting processed dataset contains 4,776 lead sheets
with a variable length of 4 up to 32 bars. This was divided into
training / validation / test sets with a ratio of 8:1:1. Both the
Chord and Melody list of tokens include the “Rest” symbol.

B. Evaluation metrics

We conduct both a computational experiment and a user
study to evaluate the quality of music generated by our
proposed method. To evaluate how well our approach can
create emotionally distinctive music based on the valence of
the chord progression, we examine whether the participants in
the listening study are able to identify the overall perceived
emotions of the generated lead sheets.

1) Analytical measures: There is no standard way to quan-
titatively measure whether a lead sheet generation model has
been trained well [37]. However, we adopt the following
measures that were recently proposed in [7] and have been
used to evaluate lead sheet generation from scratch [12].

• Used Pitch Classes: Average number of used pitch
classes per bar for both melody and chord tracks.

• Rest Events: This is a modification of the proposed
“Empty Bars” metric, as we do not encounter empty bars
in our training dataset. Thus, this metric indicates the
average ratio of rest events per bar for both melody and
chord tracks.

• Tonal Distance: Measures the harmonicity between two
given tracks [38]. Large values of Tonal Distance im-
plies weaker inter-track harmonic relations between the
Melody and the Chord track.

In addition, we propose two sets of calculated measures
that can be used in the objective evaluation of generated lead
sheets (see [39], [40]). First, by measuring the “compression
ratio” of generated content we can measure the number of
repeated patterns, which is related to “long-term structure”.
This can be calculated using the Omnisia3 software which
uses the COSIATEC compression greedy algorithm [41] and
computes the following metrics:

• Compression Ratio: A measure of detecting repeated
patterns such as themes and motives in the generated
musical content.

3https://github.com/chromamorph/omnisia-recursia-rrt-mml-2019

https://github.com/melkor169/LeadSheetGen_Valence
https://github.com/chromamorph/omnisia-recursia-rrt-mml-2019


TABLE III
RESULTS OF QUANTITATIVE EVALUATION IN TERMS OF THE PROPOSED METRICS (MEAN ± STANDARD DEVIATION).

Used Pitch Classes Rest Events (%) Tonal Distance
Melody Chords Melody Chords Melody - Chords

Training Dataset 2.5896 ± 1.1283 4.8602 ± 1.6168 0.0755 ± 0.1871 0.0132 ± 0.0574 1.4634

Proposed LSTM-based 2.6503 ± 1.1166 4.4447 ± 1.6251 0.0806 ± 0.1993 0.0344 ± 0.1006 1.6432
Proposed Transformer 2.3688 ± 1.0856 4.3101 ± 1.6335 0.0886 ± 0.2147 0.0424 ± 0.0884 1.4918
LSTM two stages [11] 2.2660 ± 1.1228 4.4483 ± 1.7735 0.1079 ± 0.2499 0.0591 ± 0.1223 1.5043
MuseGAN two tracks [7] 2.8575 ± 1.1643 4.6541 ± 1.5931 0.1695 ± 0.1895 0.0437 ± 0.0807 1.6543

Pattern Metrics Tension Metrics
Compression Ratio Long Patterns (avg) Short Patterns (avg) Cloud Movement Cloud Diameter Distance to the Key

Training Dataset 1.7384 ± 0.1784 1.8039 ± 3.8745 15.3772 ± 5.9791 0.3197 ± 0.0987 2.4351 ± 0.3584 0.5639 ± 0.1083

Proposed LSTM-based 1.6599 ± 0.1113 0.8823 ± 1.8601 17.5720 ± 6.0227 0.3012 ± 0.0839 2.2780 ± 0.3426 0.5592 ± 0.1102
Proposed Transformer 1.7654 ± 0.2185 2.1533 ± 3.9989 14.4458 ± 5.9062 0.2742 ± 0.0994 2.2545 ± 0.3287 0.5667 ± 0.1136
LSTM two stages [11] 1.6715 ± 0.1267 0.8190 ± 1.8318 16.9420 ± 5.9048 0.3168 ± 0.1006 2.2266 ± 0.4118 0.6101 ± 0.1098
MuseGAN two tracks [7] 1.5355 ± 0.0664 0.2245 ± 1.0132 23.8170 ± 6.5830 0.2698 ± 0.2065 2.4879 ± 0.6753 0.6047 ± 0.1774

• Average Long Patterns: Measures the average number
of the longest detected patterns (i.e., in terms of note
events) within a lead sheet.

• Average Short Patterns: Indicates the average number
of the shortest detected patterns.

Finally, we calculate tension measures proposed by [3], [42]
to quantify the tension profile of a musical song. Musical
tension forms an essential part of the experience of listening to
music – increased tension levels can be subjectively described
as “a feeling of rising intensity”, while decreased tension is
a “feeling of relaxation” [43]. We calculate the following
measures which are based on the spiral array proposed by [44]:

• Cloud Diameter: Indicates the level of dissonance within
a sliding window frame (i.e., “cloud”).

• Cloud Momentum: Measures the distance (tonality
movement) between different clouds

• Tensile Strain: Calculates the tonal distance between a
cloud of notes and the key of the piece.

2) Listening test setup: We conducted an online listening
test in which participants rated 15 short samples of lead sheets
ranging from 20 to 40 seconds in duration. Each sample was
presented in the form of a video clip which captures the
playback of a lead sheet, so that the user could also see the
chord symbols. The distribution of the samples was as follows:
(i) 5 samples selected randomly from the test set, (ii) 5 samples
generated with the Transformer architecture, and (iii) another
5 samples generated using the LSTM-based architecture.

First, we wanted to subjectively measure which proposed
model sounds more “pleasant” and coherent. Thus, each
participant was asked to rate each sample on a 5-point Likert
scale, ranging from 1 (very low) to 5 (very high), using four
criteria that were adapted from [7], [12]:

1) Rhythm: Whether the Rhythm events are pleasant.
2) Melody: How novel the generated Melody is.
3) Harmony: If the Chord Progression sounds coherent.
4) Naturalness: Whether the “humanised” element is per-

ceived.

Second, in order to evaluate whether our proposed approach
can really steer the valence of the generated chord progression,
we asked the participants to rate their overall perceived valence
of the chord progressions, using the five discrete labels from
Section III-A which we refer to as valence descriptors in this
experiment. For the test samples we calculated the average
valence using our novel method presented in Section II. These
valence values were then used as input conditions to generate
music pieces. These new pieces were then rated by listeners
in terms of valence. This allows us to evaluate whether the
desired (input) valence is the same as the valence perceived
by actual human listeners.

V. EXPERIMENTAL RESULTS

A. Quantitative Evaluation

We compare the evaluation scores of our proposed method
with two related state-of-the-art approaches. Specifically:

• LSTM - Two stages: We re-created the two-stage LSTM
model from [11] with the same configuration and hyper-
parameters. In the first stage, Rhythm and Chord events
are generated together using two stacked LSTM layers.
Next, the previous output is fed to the BiLSTM layers to
get the states and generate the Melody with two stacked
LSTM layers again.

• MuseGAN - Two tracks: We adapted the model pro-
posed by [12] which generates Lead Sheets from scratch
as a first stage using the MuseGAN [7] architecture, a
multi-track Sequential Generative Adversarial Network.
We reduced the generated tracks to Melody and Chords
only, and converted our training data to piano-roll format
(an alternative symbolic representation) to be compatible
with the network input.

Moreover since MuseGAN cannot generate sequences of
variable length, we set a fixed length of 8 bars in a 4/4 Time
Signature. Therefore, the training data was split into phrases
in order to train all the models. We generated a total of 2,000
sequences. For our two proposed models (i.e., Transformer and



TABLE IV
LISTENING EXPERIMENT RATINGS (MEAN ± 95% CONFIDENCE

INTERVAL) FOR PIECES GENERATED BY THE TWO PROPOSED
ARCHITECTURES AS WELL AS EXISTING (HUMAN) COMPOSITIONS.

Rhythm Melody Chords Naturalness

Human
Composer 3.62 ± 0.16 3.50 ± 0.17 3.56 ± 0.16 3.64 ± 0.16

LSTM-based 3.47 ± 0.17 3.43 ± 0.17 3.51 ± 0.15 3.28 ± 0.15
Transformer 3.53 ± 0.14 3.68 ± 0.16 3.76 ± 0.14 3.41 ± 0.17

LSTM-based), we used random sequences to act as Encoder
inputs that were generated from normal distributions of the
corresponding musical parameters which were acquired from
the training dataset. Finally, the hyper-parameter temperature
τ was fixed at 1.0 for all models.

Table III shows the results of all the proposed metrics
for all the models. Values close to those extracted from
the training data indicate that the generated fragments may
have more chance to be musically valid as they match the
properties of existing music. Regarding the first set of metrics
proposed by [7], we can observe that the proposed LSTM-
based seq2seq model achieves the best results in almost all
categories except for the Tonal Distance and the average Used
Pitch Classes for Chords. However, the small mean differences
and high standard deviations in all models (even in the training
set) suggest that strong conclusions cannot be made. One
reasonable explanation for the high standard deviations may
be the fact that Used Pitch Classes and Rest Events metrics
are computed per bar in which the density of events can have
large fluctuations.

Surprisingly, there is a huge difference in the pattern met-
rics. Based on these results, it seems that the Transformer
is able to better generate sequences with long-term structure.
This highlights the effectiveness of our proposed representa-
tion, which seems to work better in the Transformer architec-
ture than the LSTM-based model. In addition, MuseGAN fails
to produce repeated patterns, which can be explained by the
small number of training instances and the nature of the piano-
roll representation. Finally, regarding the tension measures, the
two baseline models seem to have slightly better results but,
once again, the difference is quite small, especially if we take
into account the standard deviation.

B. Subjective Listening Test

A total of 42 subjects participated in our listening test.
All of the participants indicated that they have a strong
musical background and a profession related to the music
industry (e.g., composers, producers, performers, and music
information retrieval (MIR) researchers). We targeted these
groups because we believe that our specialised experimental
questions may have been confusing for users without sufficient
musical knowledge. In an overall of 630 votes, Table IV
reveals that both proposed models’ ratings on the different
aspects of musicality of the piece are very close to those given
to the real compositions. In addition, the Transformer seems to

TABLE V
SUBJECTIVE EVALUATION OF THE ABILITY OF THE PROPOSED METHOD
TO SUCCESSFULLY GENERATE A CHORD PROGRESSION ACCORDING TO
THE CALCULATED VALENCE DESCRIPTOR. THE COLOUR OF THE USER
VALENCE DESCRIPTOR INDICATES THE SUCCESS (GREEN) OR FAILURE
(RED) OF THE MODEL, I.E. A MATCH BETWEEN THE INPUT CONDITION

AND THE RESULTING USERS’ AVERAGE RATING.

Track
Calculated Valence

Descriptor
(input cond.)

User Valence
Descriptor
(of output)

Model

1 Neutral Neutral Human Composer
2 Moderate High Moderate High Transformer
3 Neutral Neutral LSTM - based
4 Moderate High Moderate High Human Composer
5 Neutral Moderate High Transformer
6 Moderate Low Moderate Low LSTM - based
7 High Moderate High Human Composer
8 Moderate High Moderate High Transformer
9 Moderate Low Moderate Low LSTM - based
10 Neutral Moderate Low Human Composer
11 Moderate Low Moderate Low Transformer
12 High Neutral Human Composer
13 Moderate High Moderate High LSTM - based
14 Moderate Low Moderate Low Transformer
15 Moderate High Moderate High LSTM - based

generate “more coherent” and “more pleasant” compositions
than the LSTM-based model, and may outperform the real
compositions when it comes to melody and chords.

The effectiveness of our proposed method to generate music
with a particular valence is shown in Table V. This table shows
the valence descriptors that were given as input conditions
for generation (or, for the human pieces, those calculated
manually), as well as the valence descriptors from averaged
participant ratings in the experiment. From the 15 musical
fragments in the experiment, 11 were matched correctly with
the corresponding input valence descriptor. The 4 mismatches
may be due to the level of subjectivity involved in labelling
valence. Interestingly, we find that almost all mismatches are
those on the real human compositions.

VI. CONCLUSIONS

This paper introduces a novel strategy for conditional lead
sheet generation that allows the user to steer the music genera-
tion using high-level musical qualities. We present a novel ap-
proach for calculating the valence of a chord progression using
pre-defined mood tags proposed by music experts. Then, by
tackling the task of lead sheet generation as a Neural Machine
Translation problem, we propose a new approach to represent
musical conditions such as valence as input to the encoder
stage of popular sequence-to-sequence architectures. These
conditions are then translated into musical lead sheet events
in the decoder stage. An analytical experiment and listening
test show that the proposed strategy is able to produce lead
sheets in a controllable manner with similar musical attributes
to the training dataset, that contain long-term structure, and
which sound coherent and pleasant. In addition, the results
of the listening test indicate the effectiveness of the proposed
strategy to calculate and control the valence of a generated



chord progression. In future research, we might examine the
effect of using a noise-robust loss function (e.g. [45]) on the
model performance, along with adding more high-and low-
level musical conditions such us arousal and just-intonation.

REFERENCES

[1] L. A. Hiller Jr and L. M. Isaacson, “Musical composition with a high
speed digital computer,” in Audio Engineering Society Convention 9.
Audio Engineering Society, 1957.

[2] D. Herremans, C.-H. Chuan, and E. Chew, “A functional taxonomy of
music generation systems,” ACM Computing Surveys, vol. 50, no. 5, pp.
1–30, 2017.

[3] D. Herremans and E. Chew, “Morpheus: generating structured music
with constrained patterns and tension,” IEEE Transactions on Affective
Computing, vol. 10, no. 4, pp. 510–523, 2017.
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