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Abstract—Shallow water environments create a challenging
channel for communications. In this paper, we focus on the
challenges posed by the frequency-selective signal distortion
called the Doppler effect. We explore the design and performance
of machine learning (ML) based demodulation methods — (1)
Deep Belief Network-feed forward Neural Network (DBN-NN)
and (2) Deep Belief Network-Convolutional Neural Network
(DBN-CNN) in the physical layer of Shallow Water Acoustic
Communication (SWAC). The proposed method comprises of a
ML based feature extraction method and classification technique.
First, the feature extraction converts the received signals to
feature images. Next, the classification model correlates the
images to a corresponding binary representative. An analysis
of the ML based proposed demodulation shows that despite the
presence of instantaneous frequencies, the performance of the
algorithm shows an invariance with a small 2dB error margin
in terms of bit error rate (BER).

Index Terms—Demodulation, Signal Processing, Neural Net-
work, Feature Extraction, Machine Learning

I. INTRODUCTION

Shallow Water Acoustic Communications (SWAC) channels
are generally recognized as one of the most difficult commu-
nication media in use today. One of the main reasons for this
is the change in instantaneous frequencies after propagation
called the Doppler effect. The severity of which is amplified
for SWAC channels due to the relatively slow speed of
sound [1]. It is caused both by the delays spreading over tens
or hundreds of milliseconds [2] and the relative displacement
of the transmitter and receiver. The challenge of the Doppler
effect in SWAC channel is especially complex and requires
more effective methods to handle the problem.

When the challenge is to model complex system, machine
learning (ML) or deep learning (DL) is the technique of
choice for most researchers [3]. There has been growing
interest in applying DL in fields like image recognition [4]
and natural language processing [5]. Recent works done by
Wang et al. [6] exploited deep learning to detect signal
modulations in underwater channels. Applying ML techniques
to communication blocks has provided a promising solution to
the complex channel problem.

Demodulation is seen as one of the most fundamental
blocks in communications systems. It works by using an
estimation of the information stored in the instantaneous phase
signals, given the composite signal. The conventional method
of demodulation is called the maximum-likelihood estimation
(MLE), which employs an iterative approach based on New-
ton’s algorithm. It uses the discrete-time polynomial phase
transformation [7] to differentiate the binary representatives of

the received signals, resulting in demodulation. This method is
dependent on the knowledge of the modulated signal’s carrier
frequency. Therefore, the changes in instantaneous frequency,
by the Doppler effect due to the SWAC channel, greatly
diminishes the accuracy of the conventional demodulation
technique.

To address this problem, we propose two novel approaches
to the demodulation problem — (1) Deep Belief Network-
feed forward Neural Network (DBN-NN) and (2) Deep Belief
Network-Convolutional Neural Network (DBN-CNN). The
proposed architecture consists of a feature extraction technique
and followed by a classification method. The feature extraction
method comprises of a Deep Belief Network (DBN). It
constitutes multiple Restricted Boltzmann Machines (RBMs)
stacked together to form a network that learns distinctive
features from the received signal and translates these features
into an image matrix. This feature image is inputted to the
classification models for labelling. The classification model
uses NNs to associates the image with its binary representa-
tion, resulting in signal demodulation.

The remainder of this paper is organized as follows. Sec-
tion II describes the communication system. Section III il-
lustrates the feature extraction method and the two classifying
architectures, feed forward NN and CNN. Section IV provided
and discussed the simulation results. Finally, conclusions are
drawn in Section V.

II. END-TO-END COMMUNICATION SYSTEM

In SWAC, the channel has been known to be too complex
to understand and model [8]. One of the major challenges
is the varying instantaneous frequency called the Doppler
effect. Unlike in wireless communications, the Doppler effect
is prevalent in the underwater channel. It is caused by scatter
of the signals due to environmental changes, propagation over
several paths and long delays caused by the underwater speed
of sound [9].

First, we consider the proposed overall communication
system represented by Fig. 1. The system consists of a single
transmitter and receiver.

In this paper, we focus on the changes in instantaneous
frequency in the SWAC channel called the Doppler effect. Let
y(n) be the binary representation of the transmitted signal
x(t) during the n-th transmission. A series of transmission
symbols y(n) are translated into different transmission signal
waveforms s(t) via a Phase Shift Key (PSK) modulator. The

ar
X

iv
:1

90
9.

02
85

0v
1 

 [
ee

ss
.S

P]
  5

 S
ep

 2
01

9



Fig. 1: End-to-end System Model

following equation is used for the modulation.

x(t) = cos(2πfct+ θn) (1)

for the period 0 ≤ t ≤ T , where T is the duration of a bit, θn
is the phase of the signal and fc is the carrier frequency.

Secondly, we simplify the channel complexity by focusing
on the Doppler effect and noise. x(t) is relayed through the
following channel model.

s(t) = x(αit) + n(t) (2)

where αi represents the Doppler scaling factor and n(t) is the
Addictive White Gaussian Noise (AWGN).

Finally, we assume a set of training signals L = (xt, yt), t =
1, 2, ..., n, where xt is a training signal, yt is the corresponding
label vector and n is the number of the training signals. The
objective of the proposed algorithm is to build a model from
the training data L, such that for a given test signal x(t), the
learned model will be able to construct a predicted label ỹ(n).

To classify the signals, we consider the overall problem of
estimating the labels ỹ(n) via a learning function f(·). The
following equation provides a mathematical interpretation of
the problem.

ỹ(n) = f(s(t)) (3)

III. PROPOSED METHODS

In this section, the proposed methods (1) DBN-NN and (2)
DBN-CNN are described. First, the feature extraction pre-
processing of the received signal into a feature image is
accomplished via DBN. After which, the feature images are
matched to their corresponding binary representatives using a
classifier.

A. Feature Extraction: DBN

For the feature extraction pre-processing, the input is the
framed received signal s(t), that is segregated into vectors
of length (1×120) with a 20% overlap. For the pre-training
of the feature extraction, the corresponding labels used to
check the performance of the feature extraction are the binary
representatives. For example, the bit 0 translated into its
modulated waveform s0(t) would have the label of 0 during
the pre-training check.

DBN is a learning framework based on a deep NN with an
unsupervised pre-learning ability [10]. It comprises of multiple
RBMs stacked together to execute layer-wise greedy and un-
supervised learning. Every layer of DBN extracts features and
translates the layer’s input to a more conceptual representation.

RBM is created using probabilistic binary units that work
in a stochastic manner. It is comprised of a two layer NN —

the visible layer v and the hidden layer h. For RBM, every
node in one layer is connected to all nodes of the next layer.
However, these connections are bi-directional and there are no
links between nodes of the same layer.

The energy of the joint configuration in Boltzmann ma-
chines is given as follows:

E(v, h) = −
uv∑
k=1

uh∑
j=1

hWv −
uv∑
k=1

bv −
uh∑
j=1

ch (4)

where the visible nodes v ∈ R correspond to the input and
uv is the number of visible nodes, the hidden nodes h ∈ R
represents the latent features and uh is the number of hidden
nodes, W is the concurrent weights linking the nodes of the
visible to hidden layer, c and b are the bias terms of the hidden
and visible nodes respectively.
v and h are assigned an energy probability value that is

defined as:
p(v, h) =

1

Z
exp (−E(v, h)) (5)

where Z is the partition function that is obtained via:

Z =

uv∑
k=1

uh∑
j=1

exp (−E(v, h)) (6)

To optimize the parameters of the network at each layer
k, the following optimization problem shown by Eqn. 7 is
minimize via partial differentiation with respects to W, b, c.

gk(v, h) = −
1

m

m∑
j=1

log(P (vjk, h
j
k)) (7)

B. Classification Architectures

In the following subsections, we will use two different NN
architectures to classify the feature image produced by the
DBN — (1) Feed forward NN and (2) CNN.

1) Feed forward NN: Feed forward NN are used for
classification and regression. The network works as a classifier
to map the input F (n) to the label y(n) via Eqn. 8.

y(n) = g(F (n);φ) (8)

where φ represents the NN parameters — weights, Wφ, and
bias, bφ.

The NN architecture consists of 3 layers. The parameters
of the layers are shown in Table I. F (n) is reshaped into a
(781×1) matrix and used as the input of this network. To
optimize the network, the cross entropy loss function shown
in Eqn. 9 is used. Cross entropy measures the degree of
separation between two probability distributions. The objective

TABLE I: Feed forward NN Layers using sigmoid activation

Layers Input size Output size

1 784 300
2 300 50
3 50 2
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is to minimize the cross entropy, such that the two distributions
are seen as similar.

L = − 1

n

n∑
m=1

[y(m) log(ỹ(m))+(1−y(m)) log(1−ỹ(m)] (9)

As such, the objective is to decrease the loss function using
gradient descent depicted by Eqn. 10.

min

{
dL

dφ
= (y(n)− σ(Wφs(t) + bφ)) · s(t)

}
(10)

2) CNN: The architecture of our CNN is shown in Fig. 2.
There are 3 main parts in the model — a convolutional, down-
sampling and fully connected layers.

Fig. 2: CNN Architecture using alternating convolutional and
sub-sampling layers with a NN classification

The convolutional layer is defined by the size of the
convolutional kernels. The size of the kernel (n×n) is typically
much smaller than the (m × m) input feature matrix F (n), as
shown in Table.II. These kernels are linked to small areas of
the image known as a receptive field. They slide horizontally
and vertically to extract different sets of features by convolving
its weights with the image area to produce k feature maps
of size (m-n+1×m-n+1). These feature maps are then sub-
sampled with max pooling over non-overlapping rectangular
regions of size (5×5). Max-pooling enables position invariance
over larger local regions and down-samples the input image
by a factor of 5 along each direction. Max-pooling improves
performance by selecting dominant homogeneous features
using a rapid convergence rate.

The final layers of the network consist of two fully con-
nected layers with an output node corresponding to each
classification label. The softmax activation function shown in
Eqn. 11 is used to calculate the probabilities of on instance
belonging to each class yn.

P (si(t) = yi(n) | xi(t)) =
e(xi(t)Wy)∑M

m=1 e
(xi(t)Wm)

(11)

where si(t) is the framed received signal, yi(n) is the corre-
sponding label, xi(n) is the corresponding transmitted signal,
Wm is the weights of the m-dimensional vector x(t)Wy and
Wy is the weight of each label yn.

TABLE II: CNN model has 7 layers. The S, P and Nodes
denotes the sub-sampling, the size and number of the kernel
(width × height × no of feature maps) and the number of
output nodes.

Input: F (n), (28×28)

Layer 1 Convolutional, P = (5× 5× 6)
Layer 2 Pooling, S=2
Layer 3 Convolutional, P = (5× 5× 16)
Layer 4 Pooling, S=2
Layer 5 Convolutional, P = (5× 5× 120)
Layer 6 Neural Network, Nodes = 84
Layer 7 Neural Network, Nodes = 2

Output Predicted Label

IV. RESULTS AND DISCUSSION

In this section, we evaluate the DBN based feature
extraction. After which a comparison of the overall proposed
techniques — (1) DBN-NN and (2) DBN-CNN and training
strategies is completed. As a comparison, we used the con-
ventional MLE method devised in [11].

For the following simulation experiments, the simulated
dataset contains 40,000 transmitted signals periods, in which
50% is used for training, 20% on validation and the remaining
30% on testing. The channel used for each experiment will be
explained below.

A. Signal Feature Extraction

To evaluate the performance of the DBN feature extraction,
the following experiments were concluded. The first ex-
periment determines the algorithm’s ability to differentiate
between different instantaneous phases for the classification
in the later steps. The second experiment investigates the
performance of the technique with regards to the Doppler
effect that causes changes in instantaneous frequency.

In Fig. 3, the first 3 latent features of the (28× 28) matrix
F (n) modelled individually for 2-, 4-, 16-PSK modulation
schemes are shown. F (n) depicts a strong similarity to the
conventional PSK constellation, where each symbol is repre-
sented by a point on a 2-D axis.

Secondly, to evaluate the performance of the feature
extraction with regards to different frequencies, we extracted
features of signals of fc=0.5kHz, fc=1kHz, and fc=2kHz
respectively. Fig. 4 indicates that for 4-PSK, there is no
discerning change on the xy plane. However, when the features
are viewed on the xz plane, the features display a shift in the
z-axis, which corresponds to the third latent feature.

B. Simulation Results

In this section, three experiments were conducted with
different objectives. The first experiment assesses the perfor-
mance of the two proposed algorithms by comparing their
results with the conventional MLE. The second experiment
evaluates the invariance of the algorithms in relation to the
Doppler effect. The last experiment illustrate the accuracy of
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(a) Feature for 2-PSK (b) Feature for 4-PSK

(c) Feature for 16-PSK

Fig. 3: First three latent DBN Features for 2-,4-,16-PSK
Modulation Schemes

the algorithm with respects to the number of training data
used.

Firstly, to analyze the performance of the demodulation
technique as a whole, the model is first evaluated against
the conventional MLE, as shown in Fig. 5. The generated
dataset comprises of s(t) = x(t) + n(t) and their binary
representatives y(n). Both the proposed DBN-CNN and DBN-
NN combinations achieves similar bit error rate (BER) as the
MLE. However, for the 4- and 8-PSK, the proposed DBN-
CNN shows an increase in error starting from signal-to-noise
(SNR) at -4dB and 3dB respectively. There was a maximum
of 0.5 dB error.

Secondly, to investigate the Doppler invariant property of
the two proposed algorithms, we analyzed the algorithms
under different instantaneous frequencies. As the MLE is
vulnerable to the Doppler effect and to demonstrate the
performance of the feature extraction, this experiment will be
evaluated against the MLE demodulation of signals without
the Doppler effect.

In this experiment, the channel model Eqn.2 was used
and the carrier frequency fc was randomly varied between
0.5kHz and 2kHz, using a normal distribution with a mean at
fc=1kHz and a standard deviation of 1. Fig. 6 presents the
results of this experiment. Using the MLE as a baseline, this
experiment illustrates that despite the varying Doppler effect,
our algorithm is able to somewhat maintain the BER compared
to the results shown in Fig. 5. For 2-, 4- and 8-PSK, the
increase in BER in comparison to the BER shown in Fig. 5
are relatively similar at 2dB. A reason for this is that the error
occurred at the feature extraction phase. More research will

(a) 3-D Feature for 4-PSK

(b) 4-PSK xz-axis Feature

Fig. 4: First three latent DBN Features for 4-PSK Modulation
Schemes when fc=0.5kHz,1kHz,2kHz, fs=100Hz, bit rate =
0.05 bits per sec

Fig. 5: BER comparison between DBN-CNN, DBN-NN and
MLE for 2, 4, 8-PSK when fs=100Hz, fc=1kHz, bit rate =
0.05 bits per sec

have to be done to completely understand where the error was
incurred.

Both experiments confirmed the superior performance of
the DBN-NN relative to the DBN-CNN. One of the possible
reasons for this discrepancy is the extra layer that the CNN
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Fig. 6: BER comparison between DBN-CNN, DBN-NN and
MLE for 2-, 4-, 8-PSK with varying Doppler co-efficients
(To evaluate the Doppler invariant property of the proposed
methods, MLE demodulation input signals are without the
Doppler effect)

comprises of. This layer further extracts features from the
feature image by controlling the resolution. However, this fur-
ther defining of the features could result in over-extraction and
thus, a higher BER. In the final experiment, both the accuracy

Fig. 7: Demodulation accuracy of 2-, 4-, 8-PSK modulated
signals against the number of training periods

of the proposed DBN-NN and DBN-CNN are evaluated and
shown in Fig7. The generated dataset consists of x(t) and y(t).
It can be seen that the DBN-CNN reaches maximum accuracy
with a smaller training set in comparison to DBN-NN. This
might validate that the extra feature extraction layer in the
CNN extracts more features from the feature image.

V. CONCLUSION

In this paper, we proposes two novel ML based approaches,
DBN-NN and DBN-CNN, to the demodulation problem for
SWAC channel’s changes in instantaneous frequency. The pro-
posed architecture consists of two parts — a feature extraction
technique, followed by a classification method. The framed
received signal is inputted into the feature learning method
and outputted as a feature image matrix. Next, this feature
image is inputted to the classification models for labelling.
The classification techniques predict the binary representation
for each feature image via different NN layers.

The proposed systems were evaluated in three experiments
and was found to be effective for the SWAC channel. As
future work, the effectiveness and flexibility of the algorithms
should be further explored. One possible area to investigate in
future research is if the algorithm is able to differentiate more
modulation schemes.
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