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Long Short-Term Memory networks (LSTMs) can be trained to realize inverse
control of physics-based sound synthesizers. Physics-based sound synthesizers sim-
ulate the laws of physics to produce output sound according to input gesture signals.
When a user’s gestures are measured in real time, she or he can use them to control
physics-based sound synthesizers, thereby creating simulated virtual instruments.

An intriguing question is how to program a computer to learn to play such
physics-based models. This work demonstrates that LSTMs can be trained to
accomplish this inverse control task with four physics-based sound synthesizers.
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1 Introduction

1.1 Sound Matching

Controlling the parameters of sound synthesizers in order to realize target sounds has been a
challenge for decades. For instance, with the Frequency Modulation (FM) synthesis technique,
the connection between the carrier frequencies, modulation frequencies, and modulation indices
(particularly as these are automated) and the sound produced is complicated. Accordingly, re-
searchers have applied various techniques for adapting FM parameters to achieve target sounds
such as Horner et al. [1993], Garcia [2001], Lai et al. [2006], and Tan and Lim [1996]. Similar
work as also been conducted for tuning the parameters of physics-based models; however, most
of these works have required very specific optimizations that apply only to certain models (see
Sondhi and Resnick [1983] and Riionheimo and Véaliméaki [2002]).

1.2 Inverse Control

However, since humans are able to learn to play musical instruments, it seems very likely
that machine learning methods could help address the inverse control problem. For example,
deep as well as shallow learning for audio and music generation has been investigated from a
number of different perspectives. One approach is generating sequences of notes using MIDI
or symbolic notation (as in Waite [2016]). WaveNet is another very promising project among
others (van den Oord et al. [2016]).
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Figure 1: Paradigms for physics-based sound synthesis.

The advantage of this technique is that it allows the generation of sounds to be automated.
If a complex sound is desired, the user needs to spend time practicing to execute a potentially
difficult gesture to be able to produce the output audio.

2 Approach

2.1 Overview

Synth-A-Modeler is an open-source software project for building physics-based sound synthe-
sizers (see Berdahl and Smith IIT [2012]). Figure la shows the typical paradigm for physics-
based sound synthesis. In contrast, the present work proposes a new paradigm in which an
LSTM learns to realize inverse control of a physics-based sound synthesizer. In other words,
the LSTM uses a target sound to match the gesture that was used to create the target sound
using a physics-based sound synthesizer. Consequently, the predicted synthesized gesture can
be applied to a physics-based sound synthesizer to create a synthesized sound. Although not
studied directly in this introductory work, this paradigm has potential applications denoising
audio recordings, toolkits for making foley, sound transformations and sound mappings.

2.2 Physics-Based Sound Synthesizers Used in the Project

Each physics-based sound synthesizer used in this work receives a gesture signal that could for
example represent the position of a musician’s hand in real-time, enabling her or him to play
virtual sound synthesizers. These gesture signals are in the range of —0.05 m to 0.05 m (see
Figure 2a for an example gesture) with an audio sampling rate of 44.1kHz. Depending on the
particular sound synthesizer type, the gesture excites the synthesizer in a different way.

For example, the sound synthesizer PluckAResonator.mdl incorporates a virtual plucking
mechanism that activates a single, virtually oscillating resonator. Accordingly, the sound is
triggered when the plectrum is pushed beyond the 0 m point (see Figure 2).!

For example, as the gesture signal moves up from —0.05 m, there will at first be no sound
synthesized until the virtual plectrum moves close enough to interact with the virtual resonator
(see Figure 2). Then, as the gesture continues moving up, the plectrum “plucks” the virtual
resonator causing it to vibrate and produce sound (see Figure 2 near ¢ = 16000 samples).
Notice that the spikes in amplitude in the synthesized sound signal correspond approximately
to zero crossings in the gesture signal.

'To model the dynamics of a plectrum more precisely, the sound is actually triggered when the plectrum is
pushed a small distance d meters beyond the difference between the virtual gesture input signal and the
current position of the resonator, where d changes sign with each pluck. The details of how the sound
synthesizers work are beyond the scope of this paper. Their dynamical behaviors are complex, nonlinear
and nuanced, as is appropriate for modern physics-based sound synthesis.
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(a) Gesture signal. (b) Synthesized sound output.

Figure 2: Gesture signal input and corresponding synthesized sound output for a physics-based
model with a plucking excitation. (The horizontal axis is time in samples.)

Different nonlinear excitation mechanisms were employed in the models described below,
to verify that the LSTMs could, just like human musicians, learn to produce a wide range of
gestures for this application. For example, the synthesizer TouchSeveralModalResn.mdl was
controlled using a kind of “nonlinear contact link,” ScratchMassLinkChain.mdl incorporated
a bowed-string kind of interaction, and PluckHarp10.mdl featured ten individually pluckable
virtual strings, each with its own distinct plucking point across the input gesture range.

2.3 An LSTM Network for Inverse Control

Long Short Term Memory (LSTM) networks are known for their sequence prediction abilities
(see Hochreiter and Schmidhuber [1997]). In this work, it was decided to try using LSTMs for
inverse control in order to see if an LSTM could learn to play music using physics-based sound
synthesizers.

LSTMs were implemented using the high level TensorFlow API contrib.rnn. The models
had two or three layers each with 1024 units implemented with contrib.rnn.MultiRNNCell
wrapper with default settings except where indicated otherwise (Abadi et al. [2015]). The loss
function used the mean-squared error to measure the similarity between a synthesized gesture
7 and a gesture y that was used to produce a target sound z. The Adam Optimizer was used.
Figure 3 shows the process of generating the data and training an LSTM.

In order to capture the most data with a single input, the audio data in  was downsampled
from 44100Hz to 2756Hz (a speech-quality sampling rate) before showing it to the LSTM.
To obtain gesture signals, six-minute recordings were made with each physics-based sound
synthesizer of a human musician performing musical gestures using a single degree-of-freedom
haptic device (Berdahl and Kontogeorgakopoulos [2012]). This recording was then broken into
segments that were 1024 samples long. Batches of 98 inputs were used per training iteration.
The models were trained over 64 epochs. The validation and testing datasets were each 10%
of the original six-minute corpus.
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Figure 3: Diagram of how loss is computed.

3 Results

Audio examples of results from these experiments are available at https://cct.lsu.edu/
~apfalz/inverse_control.html. In each of the files, the left channel is the synthesized
gesture . The right channel is the target audio x. All the examples come from the test set.

Audio example 1 shows the simplest of the physics based models. The resultant audio
matches the target audio quite closely. There are slight differences in the amplitude and phase
on the audio. The authors found the differences are barely noticeable and only when listening
on headphones. Audio example 2 shows comparable results with the physics based model that
uses a virtual touch for its mode of interaction.

Audio example 3 shows the most impressive results from these experiments. In this example,
the LSTM had to learn to consider the frequencies of the target audio it was trying to match.
In some informal trials not shown here, the LSTM was shown to be able to predict comparably
accurate gestures for simpler physics based models like the one shown in audio example 1 when
the LSTM was shown only the RMS level of the target audio, rather than the raw audio itself.

Audio example 4 shows the worst performance. This was expected because the target audio
is decidedly more complex than the other inputs. The LSTM was still able to predict a gesture
that closely matched the target audio. However, there the gesture contained some extraneous
excitations.

The normalized absolute error for the test set was calculated using equation 1.

1 N 5
N Zz’:l |Yi — Y|
1 N v
N Zi:l Yil
where Y is the targets and Y is the prediction. The model was able to synthesize the target
gesture very accurately for TouchSeveralModalResn.mdl and PluckHarp10.mdl with 4.12%
and 2.20% error respectively. TouchSeveralModalResn.mdl and ScratchMassLinkChain.mdl

performed worse with 22.37% and 16.84% error respectively. The audio that resulted from
these gestures still matched the target audio closely though.

NormalizedAbsolute Error =

, (1)

4 Conclusions and Future Work

The LSTM was able to synthesize gestures for inverse control of physics-based sound synthesis.
The synthesized gestures could be used with physics-based models for re-synthesizing audio
that, at least in the opinion of the authors, subjectively resembled the target audio quite closely,
the authors hope that readers will visit the project web page and listen to the sound examples
to judge for themselves. Moreover, the gestures synthesized by the LSTM matched the target
gestures. Applications of this technology could include denoising of audio recordings, toolkits
for making foley, as well as new kinds of sound transformations and mappings, which can be
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achieved by applying the synthesized gesture signals to a diverse range of physics-based sound
synthesizers.

More generality might come from training in such a way that the LSTM produces a synthe-
sized gesture that would produce match the target audio but without matching the particular
gesture that created the input to LSTM. Measuring the loss against the audio directly rather
than against the gestures would remedy this. The physics based models are capable of a
wider range of sounds than are demonstrated in the audio inputs presented here. It should be
investigated to what extent an LSTM could model both the input gesture and time-varying
parameters like fundamental frequency or amplitude. Also larger datasets can be generated
randomly instead of only using input from a human.
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